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INTEGRATED HUMAN BEHAVIOR MODELING

AND

STOCHASTIC CONTROL

I. Introduction

Given advances in automation, systems are now being considered with the concept

of a single operator supervising multiple Unmanned Aerial Vehicles (UAVs) performing

cooperative missions. Recent cooperative control technology efforts [2, 5] have focused

on developing and demonstrating multi-UAV assignment, scheduling and route planning

for Reconnaissance, Surveillance and Target Acquisition (RSTA) tasks. These problem-

solving capabilities can produce optimal or near-optimal solutions to minimize mission

time or total distance traveled by a team of UAVs as they visit designated target locations.

These capabilities have been shown to reduce operator workload and the time required to

generate solutions compared to performing these tasks manually. The human-automation

interaction, however, is fairly rigid, limiting flexibility in mission planning and execution.

The operator identifies target locations to visit, selects the number of UAVs to be assigned,

and the cooperative control automation solves the problem and presents the solution for the

operator to accept or reject. It is more or less an “all or none” proposition, with little ability

to make adjustments without adversely affecting the solution’s optimality. An in-house

effort is underway to expand beyond the “management by consent” mode of interaction

by developing adaptable automation and interaction methods, where the operator will have

options (e.g., set duration, hold on target, skip target, change target ordering, etc.) available

to adjust or fine tune the cooperative control problem-solving process and solution to

satisfy both the mission and operator needs. The goal is to harness the efficiencies afforded

1
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from the computer algorithms while providing more flexible control to the operator. With

adaptable automation and interaction methods under development, the next step is to

facilitate adaptive interfaces and automation where the machine initiates minor to major

changes to the operator controls, displays and mission execution. Here this adaptive

capability will be achieved through mutual understanding, where the machine automation

has some awareness of the individual, and the human has in-depth knowledge about the

automation as ‘they’ perform the mission.

In pursuit of adaptive interface and automation methods, the objective of this research

is to develop a reliable human behavioral model for inclusion in a stochastic controller

which will be coupled to the vehicle assignment, scheduling and path planning automation.

The goal is to enable the automation to perform both a priori and real-time mission planning

and problem-solving based on the mission situation, vehicle resources and the individual’s

capacity to effectively perform the associated work. Moving away from the “one size

fits all” philosophy, the effort is developing a human behavioral model that represents

an individual’s performance and biases across a range of target acquisition and workload

situations (e.g., target arrival rate, dwell time over potential targets, etc.). The idiographic-

based operator model is then integrated into a stochastic controller and cooperative control

algorithm, leading to a more “closed-loop” form of problem-solving that not only accounts

for the vehicles’ capabilities but the individual operator’s behavior and performance as well.

The resulting tailored mission decisions and plans are expected to increase the system’s

target acquisition performance, while reducing performance variability across users.

The research approach leverages and extends current developments in stochastic

control optimization [6, 7] by introducing a representation of an individual’s behavior to

the stochastic controller. The goal of the embedded stochastic controller is to plan vehicle

assignments, schedules and routing to reduce the system’s probability of false alarms

without adversely affecting the target detections using a priori and real-time situation and

2
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performance data. Presently, the stochastic controller analyzes the operator’s response and

computes whether or not the object should be revisited by referencing target acquisition

probabilities, as well as the remaining objects to be inspected and the resources available.

The basis of the current stochastic control automation is aircraft/sensor position and

time factors relative to the target(s) as these variables had significant bearing on target

acquisition performance during recent human-in-the-loop simulations. AFRL/RQQA’s

initial stochastic controller design for sequential inspection of objects explored the decision

of whether or not a UAV should revisit the object of interest to maximize the total expected

information gain given there are multiple objects to visit, limited resources, a set of

corresponding conditions (position, time, and workload) to factor in, and the operator’s

target assessment.

In human-in-the-loop experiments that helped identify the initial set of stochastic

control parameters, and in other experiments with related multi-UAV tasks involving visual

inspection of targets, a wide variance in performance was observed across operators. Given

this, a human behavioral model that is based on the group’s average performance may

not represent a significant portion of the users very well, resulting in mismatched plans

and UAV actions for a number of end-users. The research reported here takes a different

approach by representing the individual’s behavior and performance in a computational

human behavioral model (also referred to as the “operator error model” in this report)

which, in essence, will customize the problem-solving and resulting mission plans for

the individual operator at the control station. During the mission, the controller can be

used to monitor the actual states (e.g., ground-sampled distance, aspect angle, and dwell

time) and compare it to the expected states, computing the probability of detecting a

given target. When disparities exist between what was reported versus expected, or where

conditions are beyond prescribed levels, the system can adapt mission plans and actions,
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manipulating such things as the UAVs’ routes, automated sensor steering action points, and

the employment of video inspection tools (e.g., digital video recording methods, mosaics).

1.1 The Stochastic Controller

1.1.1 Overview.

This section describes the formulation of the stochastic control algorithm that aides the

operator in the sequential inspection task. The logic behind the controller is the following:

on the first look at an object, the operator is unaided by the controller and makes a call

as to whether or not the object is a target. Since the state corresponding to the 1st look,

s = (d, a, t, i) [GSD,AA,DT,IET] is random and is possibly a bad state, the controller is

designed to determine an “optimal” (to be precisely defined soon) re-visit state. Note that

the controller may also decide not to re-visit the object. So as to determine the optimal

re-visit state, the controller takes into account all of the following: the state for the 1st look,

the operator’s response, the number of re-visits left and the likelihood of the object being a

target (or non-target), which is modeled by the a priori target density. The controller design

is tuned to a particular operator model, which is specified by the probabilities of true and

false target reports, i.e., PTR(s) and PFTR(s), both of which are functions of the state s—we

refer to the operator’s confusion matrix, which is state dependent.

Operator Error Model

The operator is treated as a sensor-in-the-loop automaton. The operator is not infallible

and this is statistically accounted for by his confusion matrix in the design of the stochastic

controller. To quantify the operator’s performance, two random variables are considered:

the variable X that specifies whether the object is the target T or false target FT and the

operator decision, Z which specifies whether he determines the object to be a target i.e.,

Z = Z1 or a false target, Z = Z2. Let the a priori probability that an object is a target a.k.a

target density, Prob(X = T ) = p. The conditional probabilities which specify whether the
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operator correctly reported a target or a false target are,

PTR(s) := Prob{Z = Z1|X = T, s} and (1.1)

PFTR(s) := Prob{Z = Z2|X = FT, s}. (1.2)

Together, PTR(s) and PFTR(s) determine the entries of the binary “confusion matrix” of the

operator for a given state, s. The mutual information between the random variables X and

Z, derived along the lines of information theory [15], is:

I(X; Z) = H(X) − H(X|Z)

=
∑
x,z

Prob{X = x,Z = z} log
Prob{X = x,Z = z}

Prob{X = x}Prob{Z = z}
(1.3)

where H(X) is the entropy of the random variable X and H(X|Z) is the conditional entropy

of X given the observation Z. Using Bayes’ rule and the probabilities (1.1) and (1.2), one

can show that the mutual information takes the form:

I(s, p) = pPTR(s) log
PTR(s)

pPTR(s) + (1 − p)(1 − PFTR(s))
+

p(1 − PTR(s)) log
1 − PTR(s)

p(1 − PTR(s)) + (1 − p)PFTR(s)
+

(1 − p)(1 − PFTR(s)) log
1 − PFTR(s)

pPTR(s) + (1 − p)(1 − PFTR(s))
+

(1 − p)PFTR(s) log
PFTR(s)

p(1 − PTR(s)) + (1 − p)PFTR(s)
. (1.4)

We have the probabilities that the operator will determine the object to be a target or a false

target, after the 1st look, given by

q1(s) := Prob{Z = Z1} = pPTR(s) + (1 − p)(1 − PFTR(s)), (1.5)

q2(s) := Prob{Z = Z2} = p(1 − PTR(s)) + (1 − p)PFTR(s), (1.6)

respectively. Suppose after the 1st look, the operator determines the object to be a target.

Using Bayes’ rule, we have the a posteriori probability that the object is indeed a target

given by,

p+(s,Z1) := Prob{X = T |Z = Z1} =
pPTR(s)

pPTR(s) + (1 − p)(1 − PFTR(s))
(1.7)
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On the other hand, if the operator determines the object to be a false target, then

p+(s,Z2) := Prob{X = T |Z = Z2} =
p(1 − PTR(s))

p(1 − PTR(s)) + (1 − p)PFTR(s)
(1.8)

1.1.2 Sequential Inspection.

The Stochastic Controller is designed to control a sequential inspection scenario.

The sequential inspection problem has a long history and is often called “The Secretary

Problem” or the “Parking Problem”. The secretary problem is stated as an interviewer

choosing the “best” secretary from a sequence of n candidates, where, when an individual

is interviewed, the secretary can be hired, or if not hired, can no longer be considered. The

decision [Hire, Not-Hire] is final. Hence for the Target inspection problem, if the decision

is made to not revisit the object, then the UAV must continue to the next object in the

sequence—there is no going back later. This significantly simplifies the complexity of the

problem. The solution is generally implemented as a Dynamic Program with just n stages

with no transitions from, say stage n to n−1, n−2...1. The optimal solution for the secretary

problem is to interview 1/3 of the candidates, grade them from 1-10, note the highest grade

so far, then hire the next candidate in the sequence that has a grade ≥ the high grade from

the first third.

Instead of selecting just one secretary, in the SC problem there can be m revisits, where

m < n. For the scenarios in this report, n = 5 and m = 3. The number of revisits allowed is

part of the problem specification. In the secretary problem there is no information about the

candidate population. In essence, there is an estimation problem in trying to approximate,

during the decision process, what the average grade and variation is. In contrast, the SC

has already modeled the variability in the process before the objects are observed. For

example, P(T ) = p or the prior probability that an object is a Target is assumed known.

Also, the errors in the operator observation is modeled as a confusion matrix. This allows

the SC to answer the question: what is the expected value of revisiting object i now, versus

the expected value of using the revisit on one of the remaining objects?
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The equivalent question cannot be addressed in the secretary problem: What is the

expectation that a higher score will be seen in the remaining candidates? The information

needed to compute this expectation comes from the first third of the candidates. There

is no guarantee that this approach will yield the top scoring candidate, but will, on

average, yield a high score. The sequential nature of the information limits the achievable

performance. The longer the sequence (the better the estimate of the distribution), the

greater the probability of the top scorer being selected. The SC, in contrast, has a model of

the error distribution up front. If there is no modeling error, and the expectation is accurate,

then the achievable performance should be maximum [9].

1.1.3 Objective Function.

The objective is to aid the operator in classifying the object correctly as a target or

a non-target. Let the state of the system, s = (d, a, t, i) , s ∈ S, where S is the set of all

possible states. These constitute all possible combinations of the independent variables:

Ground Sample Distance (GSD), Aspect Angle (AA), Dwell Time (DT) and Inter-Event

Time (IET) i.e., d ∈ D, a ∈ A, t ∈ T , i ∈ E. So, the set of all states, S = D ×A × T × E.

Suppose after the 1st look in state s1, the operator’s decision is Z. We wish to give the

operator a second look, in an attempt to show the object in a “better” state. The question we

pose is the following: given the operator error model (PTR(s) and PFTR(s) values ∀s ∈ S),

what state is the optimal one for a second look? Here, the controlled variables are GSD and

AA. The other two are assumed to be random variables with known uniform distributions.

To answer this question, we solve the following information maximization problem:

max
d∈D,a∈A

Et,i{I(s2, p+(s1,Z))}, s2 = (d, a, t, i), (1.9)

where we optimize over the distance, d and angle a and take expectation over the random

variables, t and i. We assume a uniform distribution for the random variables. Let
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T = {t1, . . . , t|T |} and E = {i1, . . . , i|E|}. So, the expectation is calculated as follows:

Et,i{I(s2, p+(s1,Z))} =
1
|T ||E|

∑
t∈T

∑
i∈E

I(s2, p+(s1,Z)), s2 = (d, a, t, i), (1.10)

In (1.9), the a posteriori probability, p+(s1,Z) serves as the prior probability for the 2nd

look and is computed according to (1.7) or (1.8) depending on the operator’s decision Z

after the 1st look. Let the maximizing ground scale distance and aspect angle be given by

d∗(s1,Z) and a∗(s1,Z) respectively. So, if a 2nd look was available, the operator would be

presented with a state corresponding to distance and angle given by d∗(s1,Z) and a∗(s1,Z)

respectively. Let the corresponding maximal information be given by V∗(s1, z).

Maximal information - Look up table

For all states, s ∈ S and operator inputs, Z ∈ {Z1,Z2}, we pre-compute the maximal

information, V∗(s,Z) and corresponding optimal re-visit distance and angle, d∗(s,Z) and

a∗(s,Z) by solving (1.9). Due to fuel and other constraints, it is possible that one may not

have the luxury of having a 2nd look for every object. In general, the operator is tasked with

classifying N objects, with the option of having R (< N) revisits, i.e., only R out of the N

objects can be looked at a second time. So, one has to make a judicious choice as to which

objects are worth having a 2nd look at. Again, we use the notion of maximizing information

to make our selection.

Suppose we have two objects to look at, i.e., N = 2 and R = 1. After looking at the

1st object at state s1, let the operator’s decision be Z. Given that we have only one revisit

(left), should the operator utilize it for the 1st object or should he keep it in reserve for the

2nd object? To answer this question, we compare the likely information (gain) between the

two scenarios:

max{V∗(s1,Z),EsEZ̄V∗(s, Z̄)}

= max{V∗(s1,Z),Es
[
q1(s)V∗(s,Z1) + q2(s)V∗(s,Z2)

]
}. (1.11)
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Let the control decision (whether or not to re-visit) be represented by u∗(k, r, s1,Z) ∈ {0, 1},

for the kth object in the sequence of N objects, where r is the number of re-visits left.

Here, u∗(k, r, s1,Z) = 1 implies that the decision is made to re-visit the kth object. Let the

information corresponding to the optimal decision be, W∗(k, r, s,Z). For the N = 2 and

R = 1 scenario, we have

W∗(1, 1, s1,Z) = max{V∗(s1,Z),Es
[
q1(s)V∗(s,Z1) + q2(s)V∗(s,Z2)

]
(1.12)

The logic behind (1.12) is the following. If a re-visit is utilized at the 1st object, we get the

immediate payoff, V∗(s1,Z). On the other hand, if the re-visit is not utilized, then we have

1 re-visit left at the 2nd object and the corresponding expected return is the 2nd term of the

maximization in (1.12). Note that the expectation is over two random variables. First, we

take an expectation over the operator’s decision and then we take an expectation over the

1st look state for the 2nd object. As before (1.10), we assume uniform distribution of the

state and compute the expectation as follows:

Es f (s) =
1

|D||A||T ||E|

∑
d∈D

∑
a∈A

∑
t∈T

∑
i∈E

f (s). (1.13)

The optimal control corresponding to (1.12) is given by,

u∗(1, 1, s1,Z) = 1, if W∗(1, 1, s1,Z) = V∗(s1,Z), (1.14)

and 0 otherwise.

1.1.4 Dynamic Programming Algorithm.

We extend the control algorithm to the general case of N (≥ 2) objects and R (< N)

revisits. To do so, we employ a backward recursive algorithm to compute the maximal

information and corresponding optimal control: for k = N − 1 to 1, and r = 1 to R,

W∗(k, r, s1,Z) = max


V∗(s1,Z) + Es

[
q1(s)W∗(k + 1, r − 1, s,Z1)

+ q2(s)W∗(k + 1, r − 1, s,Z2)
]
,

Es
[
q1(s)W∗(k + 1, r, s,Z1) + q2(s)W∗(k + 1, r, s,Z2)

]

. (1.15)
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The logic behind (1.15) is the following. If a re-visit is utilized at the kth object, we get the

immediate payoff, V∗(s1,Z) plus the expected future return for r − 1 revisits left at the next

object, k + 1. On the other hand, if the re-visit is not utilized, then we have r re-visits left at

the next object and the corresponding expected return is the 2nd term of the maximization

in (1.15). We use the convention, W∗(k, 0, s,Z) = 0 for all k, s,Z and for the last object in

the sequence, W∗(N, r, s,Z) = V∗(s,Z), for all r > 0. Again, the optimal control,

u∗(k, r, s1,Z) = 0, if W∗(k, r, s1,Z) = Es
[
q1(s)W∗(k + 1, r, s,Z1)

+ q2(s)W∗(k + 1, r, s,Z2)
]
, (1.16)

and 1 otherwise. If u∗(k, r, s1,Z) = 1, then the operator is presented with a 2nd look of the

kth object at the optimal re-visit distance and angle, d∗(s1,Z) and a∗(s1,Z). Note that if the

number of re-visits left is greater than the number of objects still to visit, i.e., r > (N − k),

re-visit will be utilized (“use or lose” scenario), and so, u∗(k, r, s,Z) = 1,∀s,Z. It follows

that all future objects will also be necessarily re-visited and there is no need to solve the

recursion (1.15).

1.1.5 The Estimator.

The Estimator makes the binary decision of whether an object is a Target or a

NonTarget by computing the probability of a Target based on the operator observations

and operator error model using Bayes rule. This is shown below:

P(X = T |Y = T, s) =
pPTR(s)

pPTR(s) + (1 − p)(1 − PFTR(s))
(1.17)

P(X = T |Y = NT, s) =
p(1 − PTR(s))

p(1 − PTR(s)) + (1 − p)PFTR(s)
(1.18)

The posterior probability in (1.17) is stated as the probability that an object is a Target

given that the operator said it was a Target at the state s. The posterior probability in

(1.18) is similar, except the operator said it was a NonTarget. The lower case p is the prior

probability or the Target density. The PTR(s) and PFTR(s) terms are the operator conditional
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probabilities, P(Y = T |X = T, s) and P(Y = T |X = T, s) respectively, contained in the

operator error model. The model (table) entries are actually implemented as PMD and PFA.

The computed probabilities are compared to a threshold; if above the threshold, then

the object is finally declared a Target. Example data for the decision threshold tradeoff is

shown in Figure 1.1. The decision threshold is set at the a priori Target density P(T)=.5.
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Figure 1.1: Errors as Function of Decision Threshold

The Targets to the left of .5 in the top plot are MD , and the NonTargets to the right of .5

in the bottom plot are FAs. As can be seen, there is no advantage in either FA or MD on

moving the threshold out of the .4–.6 range.

In general, the threshold for this project is set at the Target density value. If there is

only one observation, then this is the final decision. If there is a revisit, then there is an

additional step to fuse the observations. This is done by taking the posterior in the 1st step

and making it the prior for the 2nd step. The 2nd step, of course, uses the revisit state.

The value is compared to the threshold, and the decision with 2 observations is complete.
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Since the true class is known, the performance of the Estimator can be compared with the

performance of the operator. Different performance metrics can be used, but percent correct

(PC) is generally used in this report. Some alternative metrics are discussed in following

sections.

1.1.6 Performance Metrics from Information Theory.

The inspected objects are X = [T, FT ], where the true classification is either Target

(T) or False Target (FT). The un-assisted operator, or the SC–assisted operator, declares the

inspected object to be a Target or False Target, Y = [To, FTo]. The inspection operation is

modeled as an asymmetric binary communication channel, as shown in Figure H.1.

The prior information, or density, is p, PMD = 1 − PTR, and PFA = 1 − PFTR.

T

FT

To

FTo

Ptr

Pftr

Pfa Pmd

X YOperator or SC

p

1-p

Figure 1.2: Binary Communications Channel

To evaluate the benefit afforded by the SC,

1. Evaluate the average mutual information according to equation [H.1], using the PTR and

PFTR parameters of the operator, and the target density p (= 1/2). We obtain I(X; Y)o.

2. Evaluate the average mutual information according to equation [H.1], using the PTR and

PFTR parameters of the SC, and the target density p (= 1/2). We obtain I(X; Y)S C.
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3. Calculate

∆I(X; Y) ∆
= I(X; Y)S C − I(X; Y)o [bits]

This is a replacement for the PC metric and also takes into account the target density p.

Can also project ahead to account for different target densities, assuming that the operator’s

performance (PTR and PFTR) is not affected by the “knowledge” of p.

The Percent Correct (PC) is the probability of a correct transmission of a T or FT

symbol being sent through the binary communication channel shown in Figure H.1. We

calculate

PC = pPTR + (1 − p)PFTR

By the same token, sending one symbol through the channel has a Probability of Error (PE)

of

PE = pPMD + (1 − p)PFA

Since PMD = 1 − PTR and PFA = 1 − PFTR, then PC + PE = 1, as expected.

Remark If p = 1/2 then indeed PC = (PTR + PFTR)/2.

In general, see Figure H.3

The PC (and PE) performance metric allows us to calculate the probability P of correctly

classifying m objects when n ≥ m objects are being inspected. The number of correctly

classified objects is a Bernoulli random variable and consequently

P =

(
n
m

)
(PC)m(PE)n−m

Note: If 0 < p � 1 and, knowing this, the operator blindly adopts the strategy of classifying

everything as a FT, that is, PTR = 0, and PFTR = 1, then PC = 1 − p ≈ 1 and PE = p ≈ 0.

This creates an illusion of good performance. However, the information gain I(X; Y) = 0!

This tells us that information gain might be a better performance metric.

As an example, take a p = 0.05 target density case where PC = pPTR + (1 − p)PFTR:

Op: FA=1%, MD=70%, PCavg=65%, whereas PC = 0.05 ∗ 0.3 + 0.95 ∗ 0.99 = 95%
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1

PC(p) PC(p)

Pftr < Ptr Pftr > Ptr

Figure 1.3: PC as a function of p

SC: FA=0%, MD=20%, PCavg=90%, whereas PC = 0.05 ∗ 0.8 + 0.95 ∗ 1.0 = 99%

However, the I(X; Y) ≡ Expected Information Gain performance metric:

Op : I(X; Y) = 0.05 ∗ 0.3 log2
0.3

0.05 ∗ 0.3 + 0.95 ∗ 0.01
+ 0.95 ∗ 0.99 log2

0.99
0.95 ∗ 0.99 + 0.05 ∗ 0.7

+ 0.05 ∗ 0.7 log2
0.7

0.95 ∗ 0.99 + 0.05 ∗ 0.7
+ 0.95 ∗ 0.01 log2

0.01
0.05 ∗ 0.3 + 0.95 ∗ 0.01

= 0.0451928 [bits]

S C : I(X; Y) = 0.05 ∗ 0.8 log2
0.8

0.05 ∗ 0.8 + 0.95 ∗ 0.0
+ 0.95 ∗ 1.0 log2

1.0
0.95 ∗ 1.0 + 0.05 ∗ 0.2

+ 0.05 ∗ 0.2 log2
0.2

0.95 ∗ 1.0 + 0.05 ∗ 0.2
+ 0.95 ∗ 0.0 log2

0.0
0.05 ∗ 0.8 + 0.95 ∗ 0.0

= 0.206196 [bits]

This needs to be compared to the channel’s capacity, COp and CS C.

Note: When the operator adopts the strategy of declaring all inspected objects FT (PFTR = 1

and PTR = 0), then I(X; Y) = 0. If the operator uses a p loaded coin, then I(X; Y) = 0 also.

In general, given the operator or SC data PTR and PFTR, can calculate p∗ and thus

can calculate the channel’s capacity C; we here contend that the operator or SC act
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as a communication channel. We have modeled the operator and/or SC as a binary

communication channel and a natural performance metric is its capacity

C = max
p

I(X; Y) [bits]

Thus, C = C(PTR, PFTR) and is no longer dependent on the prior information/target

density parameter p. Hence, calculate C(PTROp , PFTROp) and C(PTRS C , PFTRS C ) and show

C(PTRS C , PFTRS C ) > C(PTROp , PFTROp).

Additional details are contained in the Appendix H “Communication & Information

Theory”.

This report describes a series of experiments related to the stochastic controller. (50%

density, 5% density, Signal Detection Theory (SDT) modeling, Robustness test)

1.2 Background - ATR-Human Team

For the research described in this section [8], the objects of interest are classified by

a UAV’s Automatic Target Recognition (ATR) module according to the recognition of the

presence of a certain feature. We assume that targets carry this feature, which is only visible

(and hence, recognized) from the side and from a rather narrow range of AAs. When the

pose of the object is such that the feature is visible, the ATR of the UAV will correctly

report the object as a target. Unfortunately, the viewing angle of the UAV may not be

suitable for recognizing the characteristic feature of the target in the image. In such cases,

the ATR module does not declare the object as a target, and instead, the image of the object

is transmitted to the operator for further examination.

The premise of this effort is that a human can classify objects significantly better

than machines. One can then envision an operator-aided ATR scheme to enhance the

performance of mission critical classification tasks. Even though the viewing angle of

the UAV may not be ideal when recording an image of the object, a human is believed to

use subtle cues for discerning certain features of interest. In such a case, the classification
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will be significantly enhanced by including an operator in the classification loop. This

operator-aided ATR scheme is referred to as a mixed initiative system. It is assumed that

the operator introduces a random delay in reporting his observations to the UAVs, and that

his performance (in terms of delay and accuracy of classification) deteriorates when his

workload increases—for example, when more than say four images per minute are received

from the m UAVs.

The fuel on-board every UAV is a resource that must be optimally used. Each UAV

carries a fuel reserve r, which is the fuel in excess of what is required to fly over the objects

of interest assigned to it. In those instances where, due to the object’s pose angle, the

UAV ATR module may not be in a position to discern the feature carried by the target

and consequently report it as a target, the UAV may replan its schedule upon receiving

the report from the operator. Instead of continuing on to the next object of interest, it can

turn around, revisit the object and obtain an additional view of the object from a better

aspect angle. Obviously, the fuel cost associated with this action will be expended from

the reserve. If the fuel cost is higher than the reserve, such an action cannot be taken as

the UAV will not be able to visit all the objects assigned to it. The decision problem that

naturally arises is the following: Given the communication delay (which dictates the cost

of fuel associated with revisiting the object of interest) and the report of the operator about

the object, should the UAV go to the next object in the sequence or should it turn around

and revisit the object? The answer clearly depends on the information to be gained by

revisiting the object, as well as the objective function for the optimal use of the resources.

The value of the information gathered from a 2nd view depends on how close

the observations about the object reflect the status of the object. An assignment of

an expected value to such an information at the time of decision making requires that

the entire inspection chain be modeled. Given a model and the algorithms for optimal

decision making, one can quantify the potential benefits to be had from cooperative target
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classification performed by the UAV/operator team. Some of the data required for this task

includes: target density p; ATR confusion matrix; range of aspect angles to view feature;

operator confusion matrix; and the statistics of the operator’s delay τ.

The solution approach uses stochastic dynamic programming. This takes into account

the probabilities of the ATR module and the operator misclassifying objects (his confusion

matrix). The data required by the model is derivable from physical considerations

and controlled human effectiveness experiments. For this reason, a realistic stochastic

model of the surveillance mission and the associated decision process may be considered

reasonable. A sequential inspection problem is formulated with elementary probability

theory and a closed form solution of a stochastic dynamic program is used to obtain

an optimal inspection strategy. An analytical approach is developed, with a view to

capture and identify the critical target environment, the UAV error matrix, and the operator

classification performance parameters that impact the effectiveness of the mixed initiative

operations.

1.3 Background - LEAP II

The Learning Estimates of Aggregate Performance (LEAP) II was a joint effort of

AFRL/RQQA with Aptima, Inc [11]. Prior to this effort, the error models were quite

simple, being either a constant or a simple function of a single variable (see previous

section). Here, the objective was to develop an operator error model which was a non-trivial

function of at least 4 variable states. This necessitates the use of an operator-in-the-loop

simulation to obtain the requisite data to be able to construct the error model. The Vigilant

Spirit Control Station (VSCS) simulation environment is discussed in the next chapter and

will not be belabored here. Various analyses were performed to determine the 4 variables

to which the operator target classification error performance was the most sensitive. This

turned out to be GSD, AA, DT, and IET. An important point is that these are dynamic

variables in the simulation and are representative of random variation. This was discussed
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above. The Stochastic Controller (SC) then, is also a function of these 4 variables. The

operator error model is also a strong function of the target density, which is discussed in

later chapters. However, the target density does not vary during the simulations (fixed at

50%), and therefore the controller is not a dynamic function of target density.

There are a number of issues involved with operator-in-the-loop testing. One issue

alluded to is the target density. A 50% density is not likely to be encountered, while 5% or

1% would be more reasonable. However, taking operator data at 5% density means that the

number of target observations is only 1/20 of the number of nontarget observations. This

means that the operator would have to perform 20 times the number of nontarget tests than

would be needed for a 50% density experiment. It is impractical to perform that number

of operator tests. Even at 50% density, there were 3,200 test samples that needed to be

performed. This came from the decision to limit the test conditions to high/low values.

This gives 24 = 16 discrete “states” at which data is to be taken. A 100 samples per state

objective was decided upon that should give a relative frequency accuracy of a few percent

for False Alarm (FA) rate and Missed Detection (MD) rate at each state.

The decision was made to build an aggregate operator error model from a pool of

test subjects. For one thing, the 3200 test cases would take many hours, which may be

impractical for a single subject. For another, a single subject may be able to learn the

parameters of the simulation and therefore bias the results. Finally, if a single subject is

used, then the model is essentially tuned to the biases of that person and the model would

not be representative of the expected average performance. For these reasons, 26 subjects

were selected over a broad age and experience range. This gave 128 samples per operator

times 26 operators to give 3328 total samples. After pruning the data, this resulted in 3179

samples for the functional model. The aggregate data for the operator error model gave an

overall FA=32%, MD=13%, and PC=77%. Interestingly, these aggregate results are quite

similar to the overall results from Operator S1 discussed in the section Test 1 below.
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The data was used to train a statistical model using Gaussian Processes (GPs). GPs

are a supervised machine learning technique that produces a posterior distribution over

functions that best describes the data. This yields 2 models, one for FA and the other

for MD. Both are a function of the 4 independent variables/states. These models closely

approximate the data and provide estimates for intermediate states where there was no data

taken. This model was then used with the SC in a validation experiment with 11 different

test operators. The validation experiment was performed with a 5% target density, whereas

the error model was trained with 50% target density. The result was that the majority of the

validation operators had a FA rate in the single digits. This resulted in significant modeling

error for those operators. At the time, the extensive conservative bias of the majority of

the operators at low density was not fully appreciated. Only later, in the Integrated Human

Behavior Modeling and Stochastic Control (IHBMSC) project for the Test 3 at 5% target

density (see following Chapters) did the operator bias to extremely low FA rates become

clear.

Also, it is interesting that the LEAP II operator error model was sufficiently similar to

Operator S1 (see chapter on Test 1 below) that it could be used to initialize the SC for the

data collection. This even though the scenarios and experiment had significant changes.

The robustness was not expected, nor was the robustness of the SC to density changes

expected (see Test 2 and Test 3 below).

1.4 Background - Signal Detection Theory

Signal detection theory has been used to model human behavior in many visual tasks

including: monitoring a system with automated alerts [10], visual search/attention [13],

and target acquisition [1]. Signal detection theory is also applicable to the Target/Non-

Target decision that operators were asked to make in this study, which is equivalent to

a yes/no decision about presence of a signal. The advantage of signal detection theory

in this work is its ability to characterize two aspects of a decision: sensitivity and bias.
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Sensitivity refers to the perceptual and cognitive capabilities of a human to distinguish

between different states of the world. Within this study, there are two possible states of

the world: a target letter is present or a non-target letter is present (also called target

absent). In some circumstances the target and non-target letters can be easily confused,

such as when the letters are very small in the video because the UAV’s altitude is very high.

Circumstances of high confusability are instances of low sensitivity. Other circumstances

in which the letters are rarely or never confused are instances of high sensitivity.

Sensitivity is distinguished from bias, which is an overall tendency to respond target

or non-target. Bias refers to the cognitive influences of the human’s decision process.

Bias is commonly described as liberal (saying target more than non-target) or conservative

(saying non-target more than target). Bias may shift depending on: the likelihood of targets

and non-targets, the goal of the operator (e.g., never miss more than 1/20 targets), or the

costs and payoffs for decision outcomes. Following with early signal detection theory, we

assumed that bias is independent from sensitivity. We also assumed that the experiences of

a particular event were normally distributed and that the distributions of experiences had the

same variance. (The question of measuring unequal variances or non-normal distributions

requires high precision and a very large number of trials [4], making it more of a theoretical

concern than a practical one).

In these tests there were four types of decision outcomes, resulting from combinations

of the two states of the world and the two possible responses (Table 1.1). Signal detection

metrics combine the information from hits (i.e., trials in which the target was present)

and false alarms (i.e., trials in which the target was absent) to calculate sensitivity and

bias. This combination of information from target and non-target trials is a distinction

from the confusion matrices used in the SC’s operator error model. A common metric

of sensitivity is d’, which can be visualized as the distance between the target and non-

target distributions in z-score units (Figure 1.4). This metric can also be expressed in
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terms of maximum percent correct, which is the best performance that can be obtained

for a given sensitivity. (Maximum percent correct is different from actual percent correct

because maximum percent correct assumes an optimal bias, though in practice the two are

often within 4-6%; [4]). A common metric of bias is β, which is directly related to the

likelihood ratio between the target and non-target distributions.

Table 1.1: Decision Outcomes in Signal Detection Theory

State of the World
Response Target Non-Target

“Target” Hit False Alarm

“Non-Target”
Missed Correct

Detection Rejection

β  = 𝑙 𝑒 = 𝑃(𝑒|𝑇)
𝑃(𝑒|𝑁𝑇)

 = 𝑨
𝑩
 

 

Non-Target Distribution  Target Distribution 

Decision Criterion 

“Target” Response “Non-Target” Response 

 . A 

.  B 

d’= 𝑧 𝐻𝐻𝐻𝐻 − 𝑧(𝐹𝐹) 

Figure 1.4: Theoretical Distributions of Target and Non-Target Events
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II. General Method

2.1 Scenario

2.1.1 Operator Task.

The Reconnaissance, Surveillance and Target Acquisition (RSTA) sequential inspec-

tion task required the operator to view an object in a video and classify the object as a

target or a non-target. Two seconds before the object entered the field of view, an alert

appeared on the interface to signal the operator. The operator then responded either Tar-

get or Non-Target by pressing a button on the interface. If the operator did not respond,

the cue extinguished 10 seconds after the object left the field of view. Operator confi-

dence ratings were collected after each Target/Non-Target response. Test subjects spoke

their confidence rating to the test administrator, who recorded it. Confidence ratings were

collected for a number of reasons: 1) to investigate the relationship between operator con-

fidence and performance, 2) to enable some bias analyzes with signal detection theory that

were not possible with only Target/Non-Target responses, and 3) to assess their potential

to further improve system performance if they could be incorporated into the Stochastic

Controller (SC). For example, if the SC was not revisiting Points of Interest (POIs) that the

operator had low confidence in their decision and their confidence was related to his/her

accuracy, incorporating confidence ratings into the SC logic could better allocate the revisit

budget.

In the task, the subject was instructed to “do the best you can” (i.e., maximize

accuracy) and no performance feedback was provided during training or testing. The

subject was instructed to sit with her eyes 32” from the monitor. No chinrest was used, but

the distance was indicated with a marker and monitored by the test administrator. Other

instructions given to the subject are described in Appendix D. There were 20 objects located

at 20 POIs per run. Half of the objects were Targets and half were Non-Targets. In addition,
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12 POIs were revisited in each run because the SC was incorporated into the system during

all testing. The initial views of POIs combined with the revisits resulted in 32 observations

per run. Each run lasted approximately 13 minutes. Between runs, the subject was given

a 3-minute break that also allowed the simulation software to be reset with a different

scenario. Test sessions never entailed more than 5 runs at a time, and typically one test

session was conducted per day. On the few days that had two test sessions, one was held in

the morning and one in the afternoon to allow a rest period of more than an hour.

2.1.2 The Target/NonTarget Models.

The Target is shown in Figure 2.1 and the NonTarget is shown in Figure 2.2.

Figure 2.1: Vehicle with Target Feature Y

The vehicles with their respective letters established a classification task where the

operator had to discriminate between a Target and a NonTarget. The scenario design

objective was to find 2 features that were sufficiently similar that the operator had

appreciable errors (FA,MD) on average. After pilot testing, the Y (Target) and a V

(Non-Target) were settled upon (see Appendix A). Through additional pilot testing (See

Appendix E) the chosen stimuli proved to be a moderately difficult classification task,
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Figure 2.2: Vehicle with NonTarget Feature V

where the operator would have both misses and false alarm errors (Type I and Type II

errors). The features of the letters were symmetrical about the vertical axis, and therefore

the discriminability was not a function of direction, just the aspect angle (see Figure 2.6).

The features were not symmetrical about the horizontal axis, but the nominal look angle of

the sensor (depression angle) was fixed. This symmetry meant that approach direction did

not have to be uniformly distributed over the sample states used for the operator model.

2.1.3 Stochastic Process Variables.

The scenario had four variables that defined the condition under which the Unmanned

Aerial Vehicle (UAV) flew by an object (i.e., “state”). These variables were: Ground

Sample Distance (GSD), Aspect Angle (AA), Dwell Time (DT), and Inter-Event Time

(IET).

Ground sample distance is a measurement of the resolution of a digital image referring

to how much distance of ground is covered in one pixel. A smaller ground sample distance

corresponds to a higher resolution image. Ground sample distance was manipulated by

fixing the camera zoom of the UAV and changing the altitude of its flight path. Ground

sample distance, in combination with the constants of display size and the operator’s
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distance from the display (32”), effectively manipulated the visual angle of the letters (i.e.,

their size on the retina).

Aspect angle is the angle in two-dimensional space between the vertical side of the

van displaying the task letters and the UAV’s flight path.

Dwell time is a measurement of how long the task letter was presented within the

simulated UAV sensor (i.e., the observation interval). Dwell time arose from the time it

took the letter to move across the sensor’s field-of-view, which was a fixed distance on the

display monitor. Therefore, dwell time co-varied with the letter’s velocity on the display

monitor.

Inter-event time is a measurement of how much time elapsed from the end of one

observation to the start of the next observation (i.e., inter-stimulus interval). Inter-event

time was used as a way of effecting operator workload, analogous to the event rate in

vigilance tasks (for a review of event rate and workload in vigilance, see [14]). Inter-event

time was such that it could be negative (in other words, observation intervals could overlap).

In these instances, inter-event time theoretically has some relationship to dwell time in that

when a letter is present in the videos of two different UAVs at the same time, any viewing

strategy will reduce the actual length of observation of one or the other (or both) letters.

Table 2.1: Ranges of Independent Variables

GSD AA DT IET

Minimum 0.1909 f t
pixel 45◦ 2.24s 0s

Maximum 0.2757 f t
pixel 90◦ 4.55s 500s

A planner was used to generate a UAV trajectory to visit all the objects. The stochastic

aspects of the UAV flight path that affected GSD, AA, DT, and IET were determined by

analyzes in the LEAP II program. These variables were randomly sampled from uniform
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distributions to simulate the stochastic nature of realized flight path (Table 2.1). For revisits,

the premise was that once the UAV flew over the object and the object was in the image

frame, then the true state could be determined. For example, if the size of the object was

known a priori, then the UAV height above terrain (Above Ground Level (AGL)) could be

computed as well as an altitude bias at that location. Also, knowing the ground speed,

airspeed, and heading, the local wind vector could be estimated. Given the local altitude

bias, the actual object pose angle, and the local wind vector, then a revisit state command

could be computed that yielded the realized optimal revisit state computed by the stochastic

controller.

The simulation approximated the previously described procedure and uncertainty. For

the initial object visit state, or “first look,” the guidance algorithm or planner (Cooperative

Control Algorithms (CCA)) sampled the altitude, aspect angle, and speed (dwell) uniform

distributions to yield the commanded and realized state. For the revisit, or “second look,”

the optimum state commanded from the stochastic controller was the realized state. The

simulation closely achieved the commanded states.

2.2 Apparatus

The apparatus was the Vigilant Spirit Control Station (VSCS), developed by

711HPW/RHCI. It is a research test-bed used to develop, integrate and test advanced

technology for single-operator, multi-UAV RSTA tasks and missions. VSCS served as a

single interface for performing both piloting and sensor operations and operators interacted

with it through a mouse and keyboard. For this set of studies, we used a customized version

of the VSCS that consisted of two windows (Figure 2.3). Each window was displayed on

its own 24” monitor at a screen resolution of 1920 x 1200 (Dell 2408WFPb; Round Rock,

TX). On the left window was the Tactical Situation Display (TSD) which showed the real

time position and flight plan of the UAVs overlaid on a map. On the right window were the

individual video feeds from each UAV.
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Figure 2.3: Tactical Situation Display and 4 UAV Video Display

Tactical Situation Display

The TSD is shown on the left side of Figure 2.3. The operator could see the 4 UAVs

and their point search tasks at a compressed scale. No useful detail could be seen at this

scale.

In general, the operator could have chosen whatever scale he or she wanted, with

however much detail desired. At the exploded scale, the operator would have been able to

predict when the next UAV was going to fly over an object. However, this was rendered

unnecessary by the alert (cue). Ultimately, the exploded view was not used by the operator.

Video Display

The video display is shown on the right side of Figure 2.3. It shows the simulated

feeds streamed from each of the UAVs. The video images were generated using MetaVR©.

There was a 3-dimensional terrain database and cultural objects defined for the images. The

individual UAV dynamics and sensor motion were simulated on the VSCS. UAV positions

and states were continuously streamed to the graphic computers to define a viewing state

into the 3-dimensional database. The view at this state was then sent to the VSCS and

displayed on the individual video panes. The Target/Non-Target buttons were located to

the right of the corresponding video. The alert appeared behind the buttons as red fill
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and is illustrated in two of the video panes. A number of issues occurred during video

development (see Appendix B) but were resolved to satisfaction before the tests occurred.

The Terrain Data Base

The terrain database had Level 2 digital terrain elevation data for the Demo Baghdad

area. There were high resolution textures and cultural objects in a small urban section. The

detail area was replicated (i.e., tiled) so that the UAVs were spread out over a large area and

didn’t overlap. Target/Non-Target models were defined and placed uniformly, with some

randomness, in the detailed sections of the environment. The vans were stationary for the

simulation trials.

2.3 Cooperative Control Algorithms

The Cooperative Control Algorithms, or CCA, had several functions, but the most

relevant to the Integrated Human Behavior Modeling and Stochastic Control (IHBMSC)

project was the path planning and the SC. A top-level diagram of the Cooperative Control

Algorithms (CCA) is shown in Figure 2.4 below. The class of task used here was the Point

Search Task (PST). These tasks constituted part of the mission objectives.

The point search tasks could be entered by the operator or from a file. A point search

task consisted of the Longitude, Latitude, Mean Sea Level (MSL) altitude, and the Heading

at which the point was to be viewed. Also needed was the Unmanned Aerial Vehicle (UAV)

speed and UAV altitude, as well as the UAV sensor footprint model. See Appendix C for

the detailed UAV specification. Each of the 4 scenarios had 20 point search tasks for the 20

vans. There were 4 UAVs available to perform the point search tasks, and the tasks were

set up so that only 5 tasks were assigned to a UAV. It was important that only 5 tasks be

assigned, because the Stochastic Controller (SC) was set for a sequence of 5 objects. This

was not intrinsic to the algorithm, but did greatly simplify data gathering and analysis.
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Figure 2.4: CCA Architecture Diagram

The CCA planned a path for each of the 4 UAVs to visit the allocated 5 objects.

These 4 paths were completely independent—there was no coupling between the UAVs.

This greatly simplified the design of the planner and the SC. The planner tried to find the

minimum total Dubins path length between the 5 objects (vans). This was a sequence of

straight lengths and arcs, where the arc radius was determined from the desired turn rate.

The plan could have had additional constraints, but the most important here was for

the sensor. There was a stand-off, or a minimum distance from the object, that the UAV

was on a straight (not arc) path. As the sensor was body fixed, this ensured that the sensor

footprint was on the path when flying over the object. Also, there was a constraint that the

footprint had to be completely past the object before the path could turn to the next object

to visit.

Stochastic Controller

The stochastic controller architecture is shown in Figure 2.5. The SC module was
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part of the CCA. The SC consists of several modules, and included: the design of the

control matrix; the interrogation of the control matrix; the revisit planner; the operator

alert manager; and the output data at the end of the scenario. The control design

algorithm took as input: the 5 inspection tasks per UAV; the operator model; the density;

and the number of revisits. The true density was computed from a configuration file

(PointSearchTask.vsxml) that identified the Points of Interest (POIs). The computation

of density and CCA path planning made up the initialization of the SC. The control design

Objectives 
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Objective Target Visit 
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Figure 2.5: Stochastic Controller Architecture

algorithm was not strictly a function of the planner output. This was because the inspection

length of 5 was fixed, the number of revisits was fixed at 3, and the weights were not a
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function of the distance traveled. Also, the control design was not a function of the initial

visit state. For these reasons, the controller matrix was the same for each of the UAVs.

During the execution phase, the plan/alert manager monitored the progress of the

UAV in cycling past the plan waypoints. During execution, the first thing to happen

was a Type 3 event where the UAV passed the Alert-on waypoint. The manager sent

a signal to the Vigilant Spirit Control Station (VSCS) to turn on the respective video

alert. Next was a Type 1 event where the operator declared the object in the respective

video was a Target/NonTarget. The operator input and the vehicle states were sent to

the controller matrix, i.e., u = f [GS D, AA,Dwell, IET,Operator,Revisit]. The Ground

Sample Distance (GSD) was computed from the known MSL of the object and the MSL

of the UAV (MSLa-MSLb=AGL where GSD=f[AGL,sensor]). The Aspect Angle (AA)

was computed from the UAV heading and the object pose angle (AA=Heading-Pose).

The Dwell Time (DT) was computed from the difference in the footprint leading and

trailing edge times passing the object (Dwell=f[AGL,speed,footprint]). The Inter-Event

Time (IET) was computed as the elapsed time since an alert was set and was a function of

all 4 vehicles (IET=f[AlertV1,AlertV2,AlertV3,AlertV4]). The target orientation is shown

in Figure 2.6. As can be seen, the Pose Angle of the vehicle is the number of degrees off

North. The Aspect Angle of the view is the number of degrees off the nose of the vehicle.

For Figure 2.6, if the objective is to have the UAV fly over the object beam-on (AA=90deg),

then the UAV heading is (PoseAngle=45deg) + (AA=90deg) + 180deg = 315deg.

Once the state [GSD,AA,Dwell,IET], the operator’s response (Target/Non-Target),

and the number of the remaining revisits were obtained, then the control matrix could be

interrogated to yield the revisit decision. If u = 0, then the object would not be revisited

and the UAV would proceed to the next object in the sequence. If u ∈ {1, . . . , 256}, then the

UAV was commanded to revisit the object at the respective state. This kicked off the revisit
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Figure 2.6: Target Orientation

planner, where a snapshot of a UAV revisit trajectory in the TSD is shown in Figure 2.7.

Here, the white lines are the true beam-on headings to look at the 5 objects (van). The

Figure 2.7: TSD view of UAV revisit
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faint green line is the computed revisit trajectory. The small box in front of the UAV is the

projected sensor footprint. When the revisit decision was made, a minimum length Dubins

path was computed to view the object at the AA (and altitude) specified in the controller.

Once the footprint has passed the object, a Dubins path was computed to intercept the

original path to the next object in the sequence at the specified stand-off distance. This

completed the sequence of events for inspecting an object.

At the completion of the inspection scenario, the data log file was written out. This

file contained the 1st and 2nd look state, the operator input, plus the PFA and PMD at those

states. This enabled the P(T ) to be calculated and the performance of the Estimator to be

evaluated.
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III. Tests at Target Density of 50%

3.1 Test 1: Single Operator Model Creation and Performance Assessment

This section describes an assessment of the Stochastic Controller (SC) as well as the

creation of an operator model. For the assessment, we expected that the operator and

SC combined (revisits and the Estimator) would perform better than the operator alone

(performance without revisits). In order to conduct this assessment we needed to conduct

human-in-the-loop test using an operator error model of that individual in the SC. We had

to create that model prior to conducting our test since no such model existed. The operator

error model in the SC had to capture how an operator’s performance varies as a function

of four variables of interest: Ground Sample Distance (GSD), Aspect Angle (AA), Dwell

Time (DT), and Inter-Event Time (IET). We expected that operator error would be higher

with higher values of GSD than with lower values and operator error would be higher

with lower values of AA, DT, and IET than with lower values. No predictions were made

concerning interactions between variables, however, we expected that model development

could be made more efficient if no interactions were found between variables because future

operator models could be developed by modeling the impact of each variable independently

without needing to factorially combine variables.

3.1.1 Method.

3.1.1.1 Subject.

One member of the research team volunteered to participate as a test subject (S1).

Operator S1 had normal vision and aged 21. She was experienced with psychological

research tasks and was informed of the purpose of the study.

3.1.1.2 Task.

The subject was introduced to the interface and the task prior to beginning data

collection. The subject was told that there were an equal number of targets and non-
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targets in each run. Previous research under the LEAP II project showed that the initial

task was too easy for test subjects, leaving few errors for the SC to overcome. Extensive

pilot testing was conducted using members of the research team (including S1) in order to

find ranges of values for each independent variable that would avoid these past ‘ceiling’

effects. Examples of these pilot results for one team member are contained in Appendix E.

Final ranges for variables are presented in Table 2.1. Prior to beginning data collection

for the model, we checked that the subject’s performance had not degraded below 70%

(average percent correct) and that performance was stable and asymptoted (i.e., the test

subject was done learning the task).

For the model creation effort, the subject performed 120 runs that each had 10

Target and 10 Non-Target trials (2400 trials overall). This number of trials would provide

approximately 75 samples of each of the 16 modeled states (median-split combinations of

all four variables) for target and non-target trials. Some technical issues with data logging

software resulted in losing a small number of trials (<1%), leaving 2,395 trials for creation

of the operator error model.

Important to note, model creation runs also included the SC in the system loop,

meaning that they had 12 second look trials in addition to the 20 first looks. For the SC to

function within the system loop during initial model creation runs, the operator model from

LEAP II was used. This LEAP II model was replaced by an interim model for operator S1

after 25 runs and updated after 75 runs. These interim models are presented in Appendix F.

The LEAP II model and the interim models were relatively similar and changing them

did not appear to impact operator performance during testing. Once the complete 120-run

operator model was created, an additional 10 runs were conducted using that model to

assess the performance impact of the SC.
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3.1.2 Results and Discussion.

3.1.2.1 Operator Modeling.

A total of 120 data runs (2,395 first look trials) were used to create the operator

confusion matrix entries in LEAPmodel0920.xml. Overall performance on these trials was:

S1: FA=35%, MD=17%, and PC=73.8%.

The final operator error model is shown in Table 3.1. The model shows the 16 different

states that are based on median-split combinations of the 4 variables. Variable values of

high and low are identified by their maximum and minimum, except for IET which had a

maximum of 500 seconds. The stochastic selection of states resulted in an average of 74

samples per state with a Standard Deviation (std) of about 11 samples. Across states, FA

rates ranged from 2.8% to 69.9% and MD rates ranged from 3.3% to 36.0%. A comparison

between the final model and the interim model based on 75 runs showed that the individual

FA and MD values varied less than 5%. This similarity implied that any addition of data to

the model should have a small impact on the model.

Table 3.1: Operator Model Data F0920

State GSD Angle Dwell IET Samples Hits FA Samples Hits MD
1 0.1909 45 2.24 0 80 29 0.3625 57 47 0.1754
2 0.1909 45 2.24 30 74 30 0.4054 67 60 0.1045
3 0.1909 45 4.55 0 58 10 0.1724 71 61 0.1408
4 0.1909 45 4.55 30 66 13 0.1970 75 65 0.1333
5 0.1909 90 2.24 0 50 7 0.1400 63 53 0.1587
6 0.1909 90 2.24 30 64 10 0.1563 52 48 0.0769
7 0.1909 90 4.55 0 64 3 0.0469 68 62 0.0882
8 0.1909 90 4.55 30 72 2 0.0278 60 58 0.0333
9 0.2757 45 2.24 0 91 51 0.5604 89 57 0.3596

10 0.2757 45 2.24 30 83 58 0.6988 78 68 0.1282
11 0.2757 45 4.55 0 95 38 0.4000 92 67 0.2717
12 0.2757 45 4.55 30 72 35 0.4861 60 51 0.1500
13 0.2757 90 2.24 0 79 35 0.4430 99 78 0.2121
14 0.2757 90 2.24 30 78 40 0.5128 66 51 0.2273
15 0.2757 90 4.55 0 83 28 0.3373 109 86 0.2110
16 0.2757 90 4.55 30 81 25 0.3086 79 64 0.1899
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3.1.2.2 Signal Detection Analyses of Operator Performance.

Further analyses of the operator’s pattern of errors were conducted using signal

detection theory. Analyses were conducted with “first look” trials only (n = 2,395), unless

otherwise noted. The overall performance of the operator across the entire test was d’ =

1.30, β = 0.71 (i.e., liberal). Sensitivity for high and low values of each variable is shown

in Figure 3.1. Sensitivity is expressed as percent correct maximum and the variables have

been median split (i.e., range of values of each variable has been separated into high/low

categories about the median). Percent correct maximum represents sensitivity by assuming
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Figure 3.1: Operator Sensitivity for each Variable
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an optimal bias that would maximize percent correct. For situations like this one, where

targets and non-targets were equally likely to occur and there were equal payoffs and costs

for all correct responses and errors, the optimal bias is 1. For the ranges sampled, all

variables affected operators in the expected direction (as indicated by the direction of their

slope). Low values of GSD increased performance compared to high values and high values

of AA, DT, and IET increased performance compared to low values. Comparing between

the slopes showed that ground sample distance had the largest effect on sensitivity (∆d’ =

1.12) and inter-event time had the smallest (∆d’ = 0.19).
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The combination of both levels of all variables is shown in Figure 3.2. Absence of

interactions would be shown if both lines in each panel were parallel. The upper right

panel and lower left panel show lines that are clearly not parallel, yet the direction of the

interaction of DT and IET are in different directions. A combination of these effects would

cancel out, possibly explaining the flat main effect of IET shown previously. The lines in

the lower right panel are close to parallel. This panel also shows the worst state in terms of

sensitivity, high GSD, low AA, low DT, and low IET. The lines in the upper left panel are

parallel as well. This panel also shows the best state in terms of sensitivity, low GSD, high

AA, high DT, and high IET.

To have better insight into the effects of the variables, we approximated psychometric

functions using the first look data. Psychometric functions show percent correct

performance (not to be confused with PCmax) across a range of variable values.

Psychometric functions were approximated by repeatedly splitting each high/low group

about its median (Figure 3.3). This figure shows orderly effects for GSD, AA, and DT,

though the range of variable values was restricted. The effect of IET was less orderly than

the other variables. A linear fit to IET yields a slope of almost 0 and an intercept at the

average PC for all first look trials.

One IET that we were interested in specifically was the occurrence of overlapping

observations–instances in which the operator would have to split their viewing time

between multiple video feeds. We expected that overlap instances would impact

performance because they are related to how much dwell time the test subject has to view

the Point of Interest (POI). There were and small sample sizes of 3 or 4 simultaneous

letters onscreen (41 trials, or 0.34%) because overlap instances and IETs in general were

not designed into the stimulus conditions, as previously mentioned. To increase the sample

size, all overlap trials, including instances of 2 simultaneous letters onscreen, were grouped
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Figure 3.3: Approximated Psychometric Functions for each Variable

together (559 trials, or 4.66%). To further increase the sample size, we calculated a

“generous” measurement of overlap, which began at the pre-observation cue that alerted

operators to the upcoming inspection point and ended at the time of response (845 trials,

or 7.05%). For all the ways we identified overlap trials, the difference in percent correct

between overlap trials and all other trials was less than 1%. One difficulty in assessing

the effect of overlap in this data set is that overlaps contained both first looks and second

looks. Second looks were consistently very high in accuracy, and so reduced the variability

in performance.
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3.1.2.3 Analysis of Operator Confidence Ratings.

The confidence ratings are defined as: 1 = no confidence; 2 = low confidence; 3 =

moderate confidence; 4 = high confidence; 5 = very high confidence. These ratings were

provided by the operator for each Target/non-Target decision. A histogram of confidence

ratings for first look trials shows that the most common confidence response was 2,

followed by 1, which together accounted for 84.5% of responses (Figure 3.4). Confidence

ratings of 3, 4, or 5 accounted for the remaining 15.5% of responses. During experiment

design and pilot testing, the range of stimulus values was adjusted intentionally so that

performance contained errors and the task was moderately difficult (in order to avoid floor

and ceiling effects). The number of low confidence ratings confirm the stimuli selected

were within the range of interest for this test.
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Figure 3.4: Histogram of Confidence Ratings
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Figure 3.5 shows average performance as a function of the operator’s confidence

rating. Confidence was strongly related to performance. For confidence of 3, 4, and 5,

performance was very high. Performance was low when confidence ratings were 1 or 2.

Simple correlations between confidence responses and variable values showed that: GSD

had a strong negative relationship to confidence (r = -0.61), AA and DT had medium

positive relationships to confidence (r = 0.21 and 0.20, respectively), and IET had no

relationship to confidence (r = 0.01). These correlations agreed with the sensitivity results

presented in Figure 3.1.
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Figure 3.5: Relationship between Confidence Ratings and Performance

Confidence ratings were used to synthesize a “Type-II” Receiver Operating Charac-

teristic (ROC) curve (Figure 3.6). An ROC curve plots hit rate against false alarm rate and

typically shows performance across a variety of biases or decision criteria. Perfect perfor-

mance would fall in the upper left corner and chance performance falls along the positive
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diagonal. Rather than measure different biases as in a Type-I ROC, Type-II ROC curves es-

timate different biases of the operator by recoding the operator’s responses. The operator’s

confidence ratings for non-target responses were inverted so that all target and non-target

confidence ratings were on a single scale ranging from very high confidence non-target

(-5) to very high confidence target (+5). A liberal bias was synthesized by giving “target”
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Figure 3.6: Type-II ROC Curve. See text for explanation.

responses to confidence greater than or equal -1 and a very liberal bias was synthesized by

giving “target” responses to confidence greater than or equal to -2. A conservative bias was
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synthesized by giving “non-target” responses to confidence less than or equal to +1 and a

very conservative bias was synthesized by giving “non-target” responses to confidence less

than or equal to +2. Confidence ratings of ±3, ±4, or ±5 were not recoded (due to their high

accuracy). The plotted line is based on the overall observed d’ (1.30) and the assumption

of equal-variance normal distributions, which yielded a good fit to the synthesized data.

From this data, it appears that the signal detection model could be used for approximating

the human’s performance across a range of different biases for future development of the

SC. Being able to approximate the human’s performance would be useful particularly for

instances when targets are extremely rare or extremely likely (e.g., 1% of Points of Inter-

est (POIs) or 99% of POIs) because achieving large sample sizes through human testing is

time consuming.

3.1.2.4 Stochastic Controller Assessment.

The results from the 10 assessment runs that used the final operator error model

(LEAPmodel0920.xml) are shown in Table 3.2. The SC reduced both the False Alarm (FA)

and the Missed Detection (MD) rates, resulting in a large increase in percent correct. The

SC reduced the FA rate by nearly a factor of 8, reduced the MD rate by a third, and increased

the Percent Correct (PC) by nearly 20%. The SC had a smaller impact on the MD rate

compared to the FA rate, which may be due to there being fewer MDs to begin with.

Table 3.2: Results of Stochastic Controller Assessment

FA MD PC

S1 Unaided 38% 12% 75%
S1 with SC 5% 8% 93.5%

∆ -33% -4% +18.5%
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3.2 Test 2: Robustness of the Operator Model

One hypothesis regarding human performance modeling is that differences between

people are large enough to require individual, or idiographic, models. To investigate this

possibility, we tested the performance of operators with the Stochastic Controller (SC)

when the SC contained a model of a different person. If human behavior is sufficiently

similar in this venue, then overall performance with the SC should still benefit from the

‘mis-matched’ model compared to unaided performance. Previous analyses has shown that

operators react to changes in Ground Sample Distance (GSD), Aspect Angle (AA), and

Dwell Time (DT). These had the most impact in prior tests, therefore we expected that the

operator error model in the SC may be able to generalize to other similar (suitably trained

and selected) operators.

3.2.1 Method.

3.2.1.1 Subjects.

Two members of the research team volunteered to participate as test subjects (S2 and

S3). Both subjects were male with normal or corrected to normal vision and ages ranged

from 24 to 28 years (mean = 26). Both subjects had previous experience in psychological

research and had full knowledge of the research goals and task.

3.2.1.2 Task and Training.

This test used the same test apparatus and task from the operator S1 test. In addition,

the SC used the model of operator S1 for both subjects. Both subjects were trained in

the task, one subject trained for 2 runs and the other trained for 5 runs, with sufficient

performance for participation set to PC ≥ 70% correct. A total of 17 runs per subject were

conducted, resulting in 340 trials per subject for analysis.

3.2.2 Results and Discussion.

Table 3.3 shows the results from these two subjects in comparison to operator S1’s

results from the SC assessment from Test 1. Mean confidence values for the operator with
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the SC were calculated by replacing the first look confidence rating with the second look

confidence rating for revisited targets. Data showed a large degree of similarity across

operators. Unaided performance for the different operators was similar in the task, as well

as the direction and magnitude of the benefit of the SC. These data suggest that an operator

error model for AA, GSD, DT, and Inter-Event Time (IET) may be robust and generalizable

to different subjects that are similarly trained and selected. In other words, these data did

not support the hypothesis that operators needed an individualized representation of their

performance in order to benefit from the SC.

Table 3.3: Results of Robustness Test

FA MD PC d’
Mean

Confidence

S1 Unaided 38% 12% 75% 1.48 1.8
S1 with SC 5% 8% 93.5% 2.82 3.3

∆ -33% -4% +18.5% +1.52 +1.5

S2 Unaided 31% 23% 73% 1.25 2.2
S2 with SC 7% 11% 91% 2.69 4.0

∆ -24% -12% +18% +1.44 +1.8

S3 Unaided 28% 16% 78% 1.57 2.2
S3 with SC 5% 11% 92% 2.81 3.5

∆ -23% -5% +14% +1.24 +1.3
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IV. Tests at Target Density of 5%

The proportion of targets in an environment (target density) can change from one

mission to the next. Presumably, the majority of current missions have many Points of

Interest (POIs) to view, few of which are targets, though this may not be true for all

missions. Therefore, we thought it important to study the performance of the operator

and of the operator error model within the Stochastic Controller (SC) under multiple

environments, some with equal number of targets and non-targets (as described above)

and some in which targets are relatively rare. This chapter describes work to understand

how operator performance may change in a low density target environment and test the

operator error model’s robustness to different target density.

4.1 Test 3: Predicting Operator Performance at Target Density of 5%

The concept of the Stochastic Controller (SC) is to plan revisits to points of interest

when the human operator is likely to make confusions/errors under the conditions/state of

the visit. The SC requires some representation of the operator’s performance under different

conditions in order to select the conditions of relatively poor performance (bad states) and

avoid unnecessary expenditures of resources, such as fuel, on revisiting good states. The

representation, or operator error model, of the human’s performance within the SC is a

confusion matrix. The confusion matrix represents the human’s tendencies to the machine

in order for the machine to compensate for difficult and low performance situations for

the human and simultaneously take advantage of and conserve resources during easy and

high performance situations. In addition to the confusion matrix, this research explored

an additional human behavior model using signal detection theory. We used the data from

the 50% density tests to construct a signal detection model of the operator. Then we used
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the signal detection model to attempt to predict how performance would change in a low

density task.

4.1.1 Method.

4.1.1.1 Data Used in Constructing the Model.

The model was constructed using the data from Test 1 (120 runs with operator S1).

That test manipulated four variables: Aspect Angle (AA), Ground Sample Distance (GSD),

Dwell Time (DT), and Inter-Event Time (IET). As mentioned earlier, but distinct from

many signal detection studies, AA, GSD, and DT were randomly sampled from uniform

distributions within their minimum and maximum allowable values (Table 2.1). IET was

not controlled but measured post hoc, and its distribution was non-uniform with a positive

bias. Typically, signal detection studies typically present the same stimulus multiple times

over the course of an experiment. The methodology used in the present study did not have

such repetition, so within the analysis the stimuli were grouped and the grouping strategies

are described below (median-split was used most often). Another distinction from many

studies of note is that the blocks contained trials of randomly varied independent variables

(i.e. “first looks”) mixed with trials that were revisits of points of interest with a flight

trajectory to maximize performance (i.e. “second looks”), which were not used in creating

the signal detection model.

According to signal detection theory, when targets are very rare, operator behavior

changes as a result of changes in decision bias and not from changes in sensitivity. We

used the signal detection analysis of the first look data at the 50% density to create a

model of the operator’s sensitivity for high and low levels for each of the four variables

(Figure 3.2), and changes in bias were estimated using past findings. The target density

of the environment, also known as the a priori probability of a target, was set to 0.05 for

this modeling work. The theoretically optimal bias for maximizing percent correct is 19

(P(NT )/P(T )), however research has shown that humans use suboptimal biases for a priori
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probabilities less than 0.30 or greater than 0.70 [3, 12]. No published data were found

for 5% density, so we took data from 10% density [3, 12] and extrapolated to arrive at an

expected bias of β = 3 to use in the model.

4.1.1.2 Prediction Procedure.

The synthesized responses were generated by: 1) determining the trial type (p(target)

= .05, p(non-target)=.95), 2) randomly draw values for the GSD, AA, DT, and IET (a

“state”) from distributions measured in the first experiment, 3) look up the sensitivity for

that state in the operator model, 4) calculate the decision criterion corresponding to a bias

of 3, 5) randomly draw an event from the target or non-target distribution (depending on

trial type), and 6) synthesize the response (i.e., target response if the event is above the

decision criterion and non-target response if the event is below the decision criterion). A

total of 50,000 trials were synthesized. Examples of synthesized responses showing one

of each of the four decision outcomes are found in Figure 4.1. The diamond symbol near

the abscissa represents the event. A blue diamond corresponds to a non-target event drawn

from the non-target distribution and a red diamond corresponds to a target event drawn from

the target distribution. Also note how changes in d’ result in changes in overlap between

the target and non-target distributions.

4.2 Results and Discussion

Model predictions of operator performance in the 5% density are shown in Table 4.1.

These predictions are presented next to S1’s data from Test 1 for comparison. (Comparisons

between model predictions and operator performance at 5% density to validate the model

are shown below in Table 4.3). Note the increase in PC and the decrease in hit rate and FA

rate that are expected as a result of the change in density.
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Figure 4.1: Examples of Synthesized Responses in Low Target Density

4.3 Operator Test at Target Density of 5%

We tested operator performance with and without the SC at a target density of 5%.

The objective of the test was twofold: 1) to determine the robustness of the SC with a

50% density operator error model in an environment where targets were rare, which will

be called a “low density” scenario, and 2) to validate the predictions made by the signal

detection model of operator behavior. The task was modified from initial tests so that there

was only one target per run of 20 Points of Interest (POIs) (5% target density). This change

was made in all 4 scenarios used in earlier tests. To try to minimize predictability of the
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Table 4.1: Predictions using the Signal Detection Theory Model Compared to Operator

Performance

5% Predictions
S1’s 50%

Performance

PC 92.84% 74%
Hit Rate 42.59% 83%
FA Rate 4.50% 35%

d’ 1.51 1.34
β 4.14 0.68

target and ensure the operator monitored all 4 Unmanned Aerial Vehicle (UAV) streams,

each scenario had a different UAV which flew over the target.

4.4 Method

4.4.1 Subjects.

The same test subject from Test 1 was used (operator S1). The test subject was not

informed of the change in target density.

4.4.2 Task.

The same procedure from Test 1 was used including the operator error model

developed under 50% target density, with the exception that each run had 1 target and 19

non-targets. The change in density was input to the SC, as mentioned above. The operator

performed 20 runs, resulting in 380 non-target trials and 20 target trials.

4.5 Results and Discussion

As expected, operator S1 detected the reduction in the number of targets per scenario

very quickly. When asked how many targets each run contained, operator S1 estimated 1

or 2, which is correct, assuming that on some trials the target Point of Interest (POI) may

have been revisited. The a posteriori probability of target affected the operator’s conscious
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strategy (i.e., bias). She responded Non-Target unless she had very high confidence (a

rating of 5) that the object was a Target.

The results from the low density test were analyzed using the 1st 10 runs, the 2nd 10

runs, and finally all 20 runs together. The data were split to investigate the possibility of

learning or a change in strategy/decision criterion during the course of data collection. The

results summary are shown in Table 4.2. In the Table,

PCtotal = (#NonTarget Hits + #Target Hits)/(#NonTargets + #Targets)

PCavg = (Ptr + Pftr)/2 = (#Target hits/#targets + #NonTarget hits/#NonTargets)/2

Table 4.2: Results of Low Density Test

FA MD PCavg PCtotal d’

All 20 runs
S1 Unaided 1.8% 60% 69% 95.25% 1.84

S1 with the SC 0% 25% 87.5% 98.75% 3.33
∆ -1.8% -35% +18.5% +3.5% +1.48

1st 10 runs
S1 Unaided 2.6% 50% 74% 95% 1.94

S1 with the SC 0% 30% 85% 98.5% 3.18
∆ -2.6% 20% +11% +3.5% +1.23

2nd 10 runs
S1 Unaided 1.1% 70% 65% 95.5% 1.77

S1 with the SC 0% 20% 90% 99% 3.50
∆ -1.1% -50 % +25% +3.5% +1.73

In comparison to the operator’s performance at 50% density, there was a dramatic

reduction in errors for the 5% density. Total Percent Correct (PC) went from 74% at 50%

density to 95.5% at 5% density. These differences are most likely due to the change in

density, the primary change between tests. There was no change in the distinguishability

of the features (Y versus V) or in the range of states at which the objects were viewed.
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From the perspective of signal detection theory, the operator’s decision threshold (or

bias/strategy) changed between the 50% and 5% scenarios (β = 0.53 and 8.73, respectively).

The question is: what value does knowledge of the density have on predicted performance?

If the operator responds non-target to everything (extremely conservative bias), then FA=0,

MD=1, and PCtotal=95%. The operator’s observed performance for the 5% density is also

PCtotal=95%. The implication, using this criterion, is that the observations are no better

than just saying no. An alternative policy is to decide by throwing a weighted die. In this

case, the die would only say Target 5% of the time. Note: 5% is the true density—there is

no density error. The computation now is PCtotal = (.05∗.05+.95∗.95)∗100 = 90.5%. The

metric PCavg=50% for “always say no” as well as the loaded die. The metric Information

Gain (IG)=0 for both the “always say no” and the loaded die. This will be discussed further

below in Appendix H on Information Gain. The metric PCtotal is not very sensitive to the

operator observations at low density.

4.5.1 Estimator Results.

The Stochastic Controller and Estimator for these runs had the 50% density derived

operator error model LEAPmodel0920.xml, as well as the true information that the target

density is 5%. Of the 9 errors in the 2nd 10 runs, the Estimator caught the 2 False

Alarm (FA)s and 5 of the 7 Missed Detection (MD)s. If you use the density invariant PCavg

metric, then PCavg goes from 65% to 90%. The size of the performance improvement with

this metric appears to be consistent with the 50% density PCtotal=PCavg going from 74%

for the operator to 93% with the operator and SC.

Without conducting additional tests, it was not possible to determine what the

performance improvement would be if there were no operator modeling error. Obviously,

the reduction in average operator FA rate from 35% to 1% was huge. The SC, with the

erroneous operator model, was predicting an average of 2 FAs and possibly a Target for

each UAV. This would give an average of 3 revisits needed for each UAV, so that all of the
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objects that the operator declared a Target can be looked at again, so each UAV would have

just enough reserves. However, operators did not make target responses that frequently.

In general, this meant that the controller husbanded the reserves, so there is little chance

of running out before all 5 of the objects are visited. This appeared to be born out by the

actual SC performance, where the last 3 objects were revisited 80% of the time and the first

2 objects were revisited 20% of the time. By design, all of the reserves are used in every

run.

The modeling error has little consequence for FAs because, at low density, the SC

would revisit essentially any object that the operator says is a target. The only exception

would be if the operator FA rate were essentially 0 at the specified state. This is what

happened with the present data—the SC revisited all the target declared objects and the

Estimator correctly declared the Non-Targets as FAs. So, the operator modeling error has

shown little effect on the Estimator ability to correctly classify FAs.

At low density, the situation is different with MDs. In general, a Non-Target

declaration by the operator results in the Estimator P(T)<density or P(T)�density, so there

is little expected Information Gain from revisiting the object. However, there may be a

combination of FA and MD at that state that could result in a revisit decision. An example

would be if the operator is a contra-indicator—if the operator says it’s not a Target and there

is a significant probability that it is (which was not the case for any operator we tested). If

this is in the model, the SC can pick it up and exploit it correctly. So, baring these cases, the

SC, because of the low IG, will not normally revisit an object that the operator has declared

a Non-Target.

However, if there are no Target declarations by the operator, the SC will still revisit

up to 3 NonTargets to use all the 3 revisit reserve. Essentially, nearly all of the reduction

in MD, for example from 7/10 to 3/10, is due to this effect. The operator modeling error

biases the MD revisit to the last 3 objects in the 5 object inspection sequence. If all the
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actual targets are in the 3, 4, or 5 position, then all the MDs will be revisited and the

effective MD rate will be 0 (given sufficient reserves). In actuality, across the 4 scenarios

Targets appeared in the 1st, 2nd, 3rd, and 5th positions, making the scenarios slightly

biased toward the beginning of the sequence. If the situation were reversed, the effective

reduction in MD would be somewhat greater. Also, a reduction in operator MD modeling

error should result in more objects being revisited at the 1 and 2 positions. The point here

is that it is much more difficult to reduce the MD rate than it is to reduce the FA rate at low

density. Presumably, this would be reversed in a high density environment.

4.5.2 Validation of the Signal Detection Theory Model.

The data from operator S1 in low density are presented alongside the predicted

operator performance from the signal detection theory model in Table 4.3. The measured

bias of the operator was higher than expected and in disagreement with the values taken

from the literature. The false alarm rate and the hit rate were lower than predicted,

presumably due to the difference in bias. There was some possibility that the difference

in bias was due to sampling error from the small sample size (20 of the 400 trials presented

a target). In addition, the bias measured from the synthesized data was higher than

the theoretical bias of 3.0 used to generate the data. To investigate the possibility of

sampling error as the cause of the bias increase in the synthesized data, synthesized data

was generated for 100 repetitions of 400 trials. This repetition of 400 trials allowed an

investigation of the expected variability in bias due to the sample size collected from the

operator. Furthermore, these tests were run with many different theoretical bias values and

found that variability in measured bias increases quickly (Figure 4.2). For theoretical biases

of 3.75 and higher, the measured bias of 8.45 falls within 2 standard deviations. Most likely,

there still is a difference between the theoretical and measured bias, but it is not likely that

the difference is as large as the first comparison suggested. The differences in d’ may be

due to the operator’s increased ability to learn the 4 experimental scenarios because fewer

55
Approved for public release; distribution unlimited.



targets were present (i.e., “game” the task by leveraging reduced uncertainty). During a

debrief interview, the operator indicated the ability to partially learn a sequence between

which UAV would visit the target in a scenario.

Table 4.3: Validation of the Signal Detection Theory Model in 5% Density

Model S1’s
Predictions Performance

PC 92.84% 95.24%
Hit Rate 42.59% 40.00%
FA Rate 4.50% 1.85%

d’ 1.51 1.83
β 4.14 8.54

4.5.3 Issues.

Deterministic Density and Scenarios

For each scenario, only 1 of the 20 POIs the operator looked at was a target. From

the debrief, it was clear the operator had determined the number of Targets. The debrief

also revealed that the operator knew there were 4 distinct scenarios, though the operator

was never told this. It is possible that some of these results are confounded with the

operator’s ability to exploit predictability of targets and scenarios, which would have been

the expectation that the targets appeared in a particular UAV’s sensor feed in one run,

followed by appearing in another UAV’s sensor feed in another run (e.g., UAV 2 had the

target in the run after UAV 4 had it). This would reduce the decisions made by the operator

and perhaps allow him/her to ignore a UAV’s feed on the run after it had seen the target.

A possible solution for future work would be to increase the number of scenarios and

randomize the order of scenarios so that target appearances were not related to UAVs and

never followed in a pattern. Additionally, the number of targets within a scenario could
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Figure 4.2: Inflation of Synthesized Bias Values

be varied to achieve 5% density across the scenarios but have 0, 1, or 2 Targets POIs
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per scenario. Given the high MD rate, it is clear that the operator did not leverage this

predictability to its full extent.

Low Target Samples

In the low density scenarios tests, there were only 20 Target samples. If one says the

1st 10 runs were training, then there were only 10 samples. This was too low to be able

to make a reliable estimate of the MD rate. To get 100 Target samples, one would have to

make 80 more runs. This was impractical, and it shows the limitations in extracting operator

data at low densities. Also, since the simulation was stochastic, the operator may have seen

more bad Target states than good Target states in this small sample, further biasing the

results.

Evaluation Metric

A single number is a useful metric to compare performance results. We have used

PCtotal, PCavg, and IG primarily. PCtotal is probably the most used, but there are issues

in applying virtually any metric at low density. As one can see in this section, as density→

0, then PCtotal→ 100%—just by doing nothing. This does not provide much insight into

comparing alternatives.

Modeling Error

Given the impracticality of obtaining valid low density operator data, there is a

robustness issue in using a high density operator model in a low density scenario. If

one looks at the FA rate, then the policy pursued by the operator appears to be quite

different from FA=35% at 50% density to FA=1% at 5% density. Using the model to

predict performance at low density would incur significant error. A valid signal detection

theory model of the operator could be used to develop the operator error model with less

modeling error.

58
Approved for public release; distribution unlimited.



4.5.4 Summary.

The most substantial difference between the operator performance at 5% density and

50% density was the radical reduction in the number of classification errors (from 52 to 9).

We concluded that the operator used a different decision threshold or classification strategy

to make target/non-target responses. The strategy is indeed, density dependent. From a

Signal Detection Theory (SDT) point of view, the operator is extremely conservative—

not willing to tolerate any FAs to achieve detections (FA=1%, MD=70%). Presumably,

the operator was maximizing PCtotal or minimizing the total misclassifications (in the

presence of equal values, costs/payoffs for Hits, MDs, and FAs). An interesting comparison

can be made to a “always say NonTarget” policy, which yields 10 errors (in 10 runs).

This compared closely with the 9 errors in the 10 runs. One could say that the operator

observations at low density provide little additional information or value.

The behavior of the Stochastic Controller can be usefully compared to a 2-stage screen

or a 2-stage filter. The 1st stage of the screen applies a low cost, low fidelity test to the

population. Those objects passing through the 1st screen are passed to the 2nd screen,

which consists of a high cost, high fidelity test. Those objects passing through the 2nd

screen are declared Targets (though more processing could be done). Due to the high cost,

only a limited number of high fidelity tests can be done. The objective is to design the 2

screens (SC and Estimator) so that incorrect classifications are minimized.

The demonstrated performance of the SC and Estimator has resulted in FA=0%,

MD=20%, and PCtotal=99%. As can be seen here, all of the FAs have been screened

out and 80% of the true Targets have been detected. This in spite of the error incurred

by modeling the operator using 50% density data. It is impractical to model the operator

using low density data because of the amount of data required. In this instance, the SC and

Estimator have been shown to be robust to operator modeling error. This may not be true

in general.
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An alternate configuration of the 2-stage screen uses additional confidence [1–5]

information. A 1 signifies a no confidence in the operator’s [Target/NonTarget] declaration

and a 5 a very high confidence. The objects passing through the 1st stage screen have

confidence of [1,2]. This reduced set is revisited at the same high fidelity state as the SC

revisit state(s). This revisit state has few, if any, classification errors. Whatever the operator

says [Target/NonTarget] will be the object declaration. This strategy performs surprisingly

well and does not require an operator model that is a function of state.

For the confidence factor strategy to perform well, it is important that the total number

of [1,2] confidence levels does not exceed the available reserve per UAV. No effort has

been made to prioritize the sequence, so it will just be truncated. An important point is

that any Target that the operator has falsely declared a NonTarget will have to have a 1

or2 confidence level to pass thru the 1st stage screen to the 2nd stage to have a chance to

be reclassified as a true target. This is somewhat different than the SC strategy, which is

to effectively pass all Target declarations to the 2nd state as well as to sample from the

1st stage population of NonTarget declarations to fill out the revisit reserve. This has the

potential to reduce FAs to 0 while reducing MDs somewhat.

The final point here is that it is much more difficult to reduce the MD rate than it is to

reduce the FA rate in a low density scenario.
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V. Summary and General Discussion

5.1 Integrated Operator Model and SC at 50% density

This line of research began almost 10 years ago as an extension of stochastic optimal

control. The thrust of the controller is to determine the best action to take now, to achieve

an overall goal in the future. The extension is to include the operator in the controller

design. The earliest effort looked at screening the Automatic Target Recognition (ATR)

results to determine which engagements were expected to provide the most information

for the operator to review. The patrol problem addressed which alert to view next based

on an arrival rate and the operator error rate. The sequential inspection problem involves

determining which objects to revisit to maximize the probability of correct classification.

These earlier works utilized a simple generic operator model, such as FA=MD=20%.

The benefit of such a simple model is that it introduces additional uncertainty into the

controller design. The fact that one has to allow, in the design, for the operator classification

to be wrong, may be just as valuable as the accuracy of the operator error model itself. In

the lower density scenarios particularly, the controller will tend to revisit any object the

operator initially says is a target. During field tests, the operator would tend to ask the test

director why the Unmanned Aerial Vehicle (UAV) is revisiting the object after the operator

has already said it is a target. The frequently uncomfortable answer is: “you could be

wrong.” This points out the issue of operator acceptance of a decision system that can be

viewed as second guessing him.

One can also quote rules that state that there is insufficient evidence to convict the

object as a target. The Bayesian approach requires strong evidence (low error) to convict

if the prior is low (low probability of a target). However, the controller/estimator can be

wrong as well—it all depends on the fidelity of the models, particularly the operator error
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model. Since the operator’s errors were seen to vary widely, quantizing the errors as a

function of the most significant variables seemed a reasonable choice.

Modeling the operator was not originally part of the Stochastic Controller (SC)

research direction. It came as a consequence of accounting for the operator in the controller

design. The desire for better (more predictable) performance inevitably leads to the need

for better models. Modeling the operator is problematic because: 1) operators vary widely;

2) probabilistic models over many conditions requires extensive empirical data; and 3)

low target density results in extremely low target data. The LEAP II effort addressed

the 1st issue by aggregating many operators into a single average operator model. The

consequences are that if a particular operator is far from the mean, then predictions are

poor. The present Integrated Human Behavior Modeling and Stochastic Control (IHBMSC)

effort avoids this problem by tailoring the model to the specific operator. The 2nd issue is

addressed by having the model be a function of dynamic variables only, and samples are

restricted to the high/low ranges. This allowed the number of states to scale by 2n. Both

LEAP II and IHBMSC took this approach. The 3rd issue is addressed by modeling the

operator at 50% density and using the incorrect model at the lower density. Again, both

LEAP II and IHBMSC took this approach, where the IHBMSC project in particular was

found to be quite robust to the modeling error.

An issue that absorbed considerable time in both LEAP II and IHBMSC was the

False Alarm (FA) rate. This stems from basic issues in detection as well as screening

techniques, particularly at low density. The SC, being a 2-stage screening technique, is

more adept at reducing false positives than it is at reducing false negatives. Signal Detection

Theory (SDT) says that for a specific signal/noise ratio, the detection rate can only be raised

by lowering the decision threshold, which raises the FA rate. While a threshold can easily

be lowered, say in ATR, it is not at all clear how to lower the threshold of a human operator.
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In addition, as the density decreases, the operator FA rate seems to naturally decrease. This

behavior has been observed by Operator S1 as well as by Operator S0.

Obviously, if there are no operator FAs, then there are no FAs for the SC to reduce. The

initial conclusion was that the scenarios were too easy. The objective then was to make the

discrimination problem more difficult by making the Targets and NonTargets more similar.

This was done in both LEAP II and IHBMSC by changing the states. The result was LEAP

II has average operator FA=32% and IHBMSC has average operator FA=35%, both at 50%

density. This is the point where the IHBMSC operator modeling exercise begins.

The decision was made not to separate the estimation process from the control

process. While this could have been a problem, it turns out that the estimation and

control are reasonably independent. The model data is collected at the same time the

controller performance data is collected. The model is updated periodically, while the

controller is evaluated using the previous model version. This allows an early assessment

of performance before all the model data is collected—thus preventing any nasty surprises.

While this may not be the best approach in general, it seems to work well in this case.

One consequence of the simultaneous estimation and control is that the modeling

became fairly straightforward. The number of samples at each of the states was reasonably

uniform. This meant a 16 state table could be constructed without resorting to any

complicated parametric modeling. A 256 state model was then constructed to interpolate

between the 16 states.

The final operator performance model for Operator S1 at 50% target density was

FA=35%, MD=17%, and consequently, PC=74%—from data taken over 120 runs. The

final result of the SC (with final operator S1 model) + operator S1 observations + Estimator

during the ten 50% density evaluation runs was FA=5%, MD=8%, and PC=93.5%. The

FA rate was cut by a factor of 7, and the MD rate was cut by a factor of 2. These are average

results, where individual runs can be better or worse. It shows that operator performance
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can vary widely, for many reasons, not just at different states. It shows that a decision aid,

in conjunction with the operator, can effect a radical improvement in system performance.

It shows that the decision aid is not second guessing the operator, but complementing the

operator.

5.1.1 Comparing Operator decisions to Estimator decisions.

First, take the 120 runs by Operator S1 that are used to build the operator error model

0920 and extract the operator 1st look responses where there were no 2nd looks. Second,

to this add the 2nd look operator responses for the cases where there was a revisit. For this

list, the overall decision making performance of the operator is PC=92.03%. The overall

decision making performance of the Estimator for the same 120 runs is essentially the same.

The component FA and Missed Detection (MD) rates are essentially the same as well.

However, the Operator and Estimator equivalence is not a generic result. It is, perhaps,

an artifact of the “clean” nature of the final scenario definition, plus the consistently good

performance of the operator. The operator essentially had no errors for the 2nd look

observations (either in the model data or the evaluations runs). This is because the SC

always had the operator observe the object from the best available state (reflected in the

operator error model). Plus, there was no variation in the revisit state (hence clean). In

hindsight, this may not have been the best thing to do. Some variation would have been

normal. The Estimator correctly weighted the 2 observations together probabilistically

using Bayes rule, with no tuning of the threshold at all, and consistently made the

correct decision. Operator S1 is a high performing operator and the SC is intended to

aid the operator. But, less aiding is required if the operator is very good in the first

place. This means that one is less reliant on the SC (which includes the Estimator) and

heuristics/simplifications could be okay. Also, a less proficient operator would benefit

more from the SC decision aiding.
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The operator Confidence Level (CL) observations constitute a “simple” confusion

matrix. Given the present clean scenario, however, the CL model can be a useful

approximation—when used in conjunction with simple heuristic rules. The SC, in

contrast, is generic and mathematically rigorous, yielding the optimal estimate as well as

determining which objects to revisit using the available resources. If a confusion matrix is

desired to be a function of more variables (greater fidelity), then the operator data taking, in

particular, can become intractable—especially at low density. The CL model is not (at least

here) an explicit function of state and therefore scales better, but still requires operator data

to correlate CL with performance. However, for more ambiguous scenarios, the simple CL

model could lead to cumbersome decision rules and resulting less satisfactory performance.

Complicating factors include: low density; the operator is not monotonic, meaning the

performance is not constantly increasing with CL; the operator is a counter indicator; the

conditions are much more ambiguous and it’s not clear what to do; there is no stand-out

“best” state; the operator is inconsistent and a lower performer generally; and finally, there

may be a need to combine multiple (similar) observations.

5.2 Integrated Operator Model and SC at 5% density

Empirical modeling for low density targets, and low probability of occurrance events

in general, present difficult issues. It is impractical to generate the requisite data, especially

for an operator in the loop simulation. This is important, because the experimental

evidence in this project has shown that the operator behavior is radically different between

the 50% density scenarios and the 5% density scenarios. On average, the operator will

make 52 errors at 50% density and only 9 errors at 5% density. The operator is heavily

conservatively biased and will only declare an object a Target if the confidence level is

high (a 5). This results in the operator FA being near 0, but the operator MD can be as high

as 70%. There is not enough data to be more accurate with the MD rate.
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Experimental tests were performed by Operator S1 using the SC with the Operator S1

50% derived error model on 5% density test cases. This was done to test how sensitive

the SC results were with the modeling error. Surprisingly, the SC worked extremely well,

with FA=0 and MD=20%. The SC eliminated the (few) FAs, as expected, but also made

a significant improvement in the detection. This is primarily due to the number of revisits

(60%) enabled in the design and the very low error at the revisit state. Also, the SC has

knowledge of the 5% density—the operator has knowledge of the 5% density as well. In

summary, the SC can overcome some of the extreme operator conservancy to increase the

overall target detection rate.

Since operator confidence level correlates quite well with performance, there is the

possibility of being able to implement a heuristic control policy that does not depend on

an explicit operator error model. Essentially, the heuristic controller will revisit when the

operator has the least confidence (a ‘1’), plus possibly a few ‘2’s to fill out the allowable

revisits. The final determination is whatever the operator said on the revisit. This has the

promise to perform reasonably well. If the operator performance does not correlate well

with his confidence level, then this would complicate a heuristic policy. This is not an issue

with the SC because the operator error model encodes the operator’s true performance, not

the operator’s perceived performance, which is what is encoded in the confidence level.

Alternatively, SDT has the promise of enabling the development of a 16 state operator

error model when there is insufficient data to estimate the MD rate—which is the case at

low densities. There is sufficient data to estimate the FA rate at the 16 states, however.

SDT was shown to be able to leverage existing or ongoing research to estimate operator

bias at low densities. Thus yielding an estimate of MD rate at all 16 states which can be

incorporated directly into the SC without the need for heuristics.

The utility of the Percent Correct (PC) performance criterion at 5% density is

questionable. As was discussed before, if the operator always said NonTarget, then

66
Approved for public release; distribution unlimited.



PC=95%. This is not a sensitive enough criterion to allow one to evaluate different

approaches. Intuitively, if the operator policy is to do nothing (or always says the same

thing), then the value of that policy should be 0. This is indeed the result if the Information

Gain (IG) criterion is used to evaluate the “do nothing” policy. If the operator should flip

a target density weighted coin, then the IG criterion also says the value of the policy is 0.

The IG criterion is a good candidate for use on low probability of event decision problems.

5.3 Recommendations

Operator Modeling

There was significant operator modeling error in using the 50% density developed

model for a 5% density problem. For identical scenarios (10 runs, 200 objects total), which

differed only in density, the 50% density model would predict 69 operator errors, while in

fact there were only 9 operator errors observed on average. Obviously, the operator error

model is a significant function of density. The difficulty lies in empirically modeling the

operator, in particular Missed Detection (MD) rates at low densities. At 1% density, one

would need 9,900 Non-Target samples just to exercise the operator at 100 Target samples

suitable for estimating a MD rate across all states—more samples would be required to

sample MD rates for each of 16 state bins. Clearly this is expensive. A functional

model of the operator is needed. From Signal Detection Theory (SDT), it can be seen

that Target/Non-Target distinguishability is independent from bias. Given that this analogy

holds for operators, then the problem is to analyze how and why the operator’s bias shifts

just from the perceived density changes.

Prior

The Stochastic Controller (SC), Information Gain (IG), and the Estimator are all a

strong function of the prior information on the target density. Knowledge of the Target

density is assumed known, or at least a good estimate of the density is available. Analysis

of the sensitivity of the results to small and large errors in density should be done.
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Realistically, trying to estimate the prior target density may be just as difficult as trying

to estimate the operator errors.

Operator Bias

A limited attempt was made to have Operator B bias her decision to be more liberal—

in effect to drive up the False Alarm (FA) rate, which in turn would drive up the detection/hit

rate. The results of these efforts were erratic, and it was decided not to pursue this line of

investigation. However, pursuing this line may be productive in increasing detection at low

density. This would counter what appears to be the operator’s natural tendency to lower

FA at lower density. This plays into the strength of a 2-stage filter (of which the SC is an

example) to significantly reduce the FA rate with much less reduction effect on the MD

rate.

Reserve and Threshold

One objective of the SC design was not to have any “tuning” parameters. All

parameters were to be a function of the scenario definition. The reserve and the decision

threshold may be exceptions to this guideline. The Unmanned Aerial Vehicle (UAV) revisit

capability (reserve) is based on the expected number of operator errors over the expected

states visited. Following is a discussion of the number of revisits needed (hence reserve).

As previously discussed, there were 52 errors by the operator in 10 runs at 50% density,

giving 5.2 errors per run. However, this is an average, so use factor of 2 to get 10.4 errors

per run. Two revisits per UAV gives 8 total, and 3 revisits per UAV gives 12 total. The 12

revisits were used for all of the SC calculations. However, this may not be optimal and the

sensitivity of the results to the reserve should be studied.

The default decision threshold was set to the prior density. When the computed P(T)

was greater than the density, the Estimator declared the object a Target. This may not be

the optimum choice, so the determination of the threshold needs to be studied.
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Different Features

The operator had to discriminate between a V and a Y in the present effort. There

are many other choices of interest, such as a subject with a weapon versus a subject

with another object that looks similar to a weapon or a weaponized vehicle versus non-

weaponized vehicle with similar cargo. In addition, the vehicles/subjects could be moving,

which presents a challenging planning and tracking problem. Each of these variations

presents their own challenging and unique aspects.

Operator Cueing

In these tests, the operator was cued to the presence of an object by illuminating the

viewing window. Also, the operator observation of the object was input using a Target or

a Non-Target button. The presentation to the operator should be studied to optimize the

operator performance. Additional information could be relayed from the operator by using

more buttons to signify more classes—such as confidence level.

Confidence Factor

A sliding scale could be used to signify confidence in the observation. The confidence

information could then be used to design a controller to detect and reclassify errors.

Additionally, the alternative revisit strategy using confidence ratings (Appendix K), which

does not use information theory, could be implemented and tested with operators for a

comparison to the SC.

Online Modeling

A high fidelity mission simulation could be used to build an operator error model. The

SC would not have access to ground truth so supervised learning would have to be used

to develop the Estimator’s classification strategy. This supervised learning approach could

incrementally improve the model over a larger range of conditions. The model could be

directly incorporated into the SC. The key limitation is the amount of data needed for a
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model which is a function of many variables. However, all mission training/practice time

could produce model data.

Adaptive Interface

Just as the HBM-informed stochastic controller modified the mission plan and

resulting aircraft routes, the controller could be used to manage adaptive user interface

controls and displays. For example, the controller could monitor and assess the target

acquisition conditions, and where needed, manipulate the video presentations. The video

capture from the first look could be recorded, queued up, replayed, slowed down, and/or

possibly digitally zoomed in. A prototype design is currently being developed and a human-

in-the-loop evaluation is planned to assess the effectiveness of the stochastic controller and

adaptive interface integration.

Knowledge of Intent & Level of Automation

Further research is needed on whether or not the system should provide the operator

insight into what the stochastic controller is calculating, along with the level of automation

appropriate (e.g., management by consent, management by exception, full auto) for

enacting changes to the mission plan or the video imagery presentation.

Proactive Re-Planning

In addition to referencing the human performance model for the stochastic controller’s

re-visit calculations, the model could also serve as a reference for determining if and how

adjustments should be made to the flight paths before the vehicles fly over their assigned

target locations. For example, if an inflight disturbance, such as strong winds, was causing

the vehicle to drift off course or have a significantly faster ground speed than planned,

the model could be referenced to project and assess the revisit conditions, and where out

of acceptable regions, the route(s) could be modified to improve the target acquisition

situation.
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Level of Automation Comparison Study

To assess the value of a stochastic control decision support system that re-plans routes

automatically, a formal human-in-the-loop study is needed to compare target acquisition

performance between a system with a stochastic controller and one without that still

incorporates revisits (such as operator manually-selected revisits).

Variables/States

These tests studied Ground Sample Distance (GSD), Aspect Angle (AA), Dwell

Time (DT), and Inter-Event Time (IET). There are more variables of the object inspection

task (both perceptual conditions and flight path parameters) that were not included but

impact target detection performance. (additional list of perceptual things from USAFSAM

white paper). Future work could expand the variables studied and possibly controlled for

in dynamic mission planning.

Inter-Event Time

IET was not controlled in this study, but measured post hoc. Moreover, the data from

Operator S1 showed IET had little effect on performance, contrary to expectations about

event rate, workload, and previous findings in the literature. Further investigation into this

phenomenon should be conducted, and would require control/explicit sampling of IETs.

Model Robustness to Different Operators

A preliminary test was conducted that showed that the operator error model was robust

to different operators, and suggested idiographic performance models may not be needed.

This test was small in data collection and only tested one operator error model under this

specific set of variables. A “gold standard” test would be to create a complete operator

error model for additional test subjects and then quantitatively examine the differences

between their models and test their performance with each other’s ‘mismatched’ models.

Perhaps for variables of GSD, AA, DT, and IET operators aren’t similar when studied in

this more thorough fashion. Moreover, other variables of interest mentioned above may
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show additional differences between operators (e.g., contrast sensitivity is known to vary

between people and result in differences in performance on target ID tasks).
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Appendix A: Choosing Stimuli for Target Identification

The initial concept for the target identification stimuli was to have a generic human

figure as the object and the discriminating feature is whether the figure is carrying a

weapon (rifle, Rifle Propelled Grenade (RPG)) or an implement (shovel, broom, pipe, etc).

This brought extensive modeling and simulation issues to the forefront that threatened to

overwhelm a proof-of-concept solution approach. The object configuration decided upon

was a van with a Y or V letter on the side.

Also, it is widely known that the strongest feature recognition factors are pixels/feature

(resolution) and color difference (contrast). A number of different van colors were tried

(such as red, blue) and it was seen that there were statistically significant differences in

operator performance due to background contrast. It was decided to use the off-white color

to avoid having to ensure the colors were uniformly distributed over the observation (state)

space. Similar issues were found with different classes of vehicles, such as van and box

truck. The box truck feature discrimination errors were lower than the errors for the van,

although the feature size and colors were comparable. So, for this reason the box truck was

not used.

What this means is, if one wants to expand the possible feature variations so that the

results are more robust, then many more samples are required to cover the state space [

Ground Sample Distance (GSD),Aspect Angle (AA),Dwell Time (DT),Inter-Event Time

(IET)]. Even so, the resultant operator error model will be an average over the feature

variations, and could be quite far from a specific color (contrast) sample. For these reasons,

all of the objects are vans, the color is off-white, and the features are Y and V.
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Appendix B: Video Complications

When the operator selects Target/NonTarget, the alert is reset (turned off). Unfortu-

nately, this does not always happen. For reasons that were never completely isolated, the

alert will sometimes stay on. This could confuse the operator, but the alert will reset if

Target/NonTarget is pressed again. The test director monitors the alerts and will tell the

operator to press again. After a little experience with this anomaly, the operator would re-

liably reset as needed. The operator felt this is a minor distraction and did not detract from

his performance.

All of the videos consistently experienced a low frequency (about 1Hz) jitter or

hesitation. The concern was that this anomaly would compromise the operator performance

and the validity of the results. An investigation was undertaken to determine the source

of the video jitter. There was no jitter at the graphic computers, only when the video

was displayed in the Vigilant Spirit Control Station (VSCS) media players. The media

players parameters were varied (at the expense of delay), and this did help, but the jitter

could be reduced, not eliminated. At this point, it was estimated that a significant effort

would be required to track down and fix the jitter. However, further experimentation with

the operator found, that while the jitter was annoying, it caused little deterioration in the

operator performance. The Tactical Situation Display (TSD) also had an effect on the video

jitter. If the exploded view with the path is used, then this would aggravate the video jitter.

The cause was never found, but the symptom was persistently observable. In summary, the

TSD was not used by the operator for the feature classification task. For these reasons, the

effort pressed on with the video jitter in place.

For the operator, the inspection task is quite different from the search task. The search

task is higher workload, while the cued inspection is less intense. The alert tells the operator

where and when to look. The alert is effective, as the operator never failed to note that it
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was on. This certainly impacts the Missed Detection rate, as well as the nature of MD.

For the search task, a MD is truly a “Miss”. The operator was looking elsewhere and

didn’t see it. A “Miss” for the inspection task is actually a misclassification. The operator

saw the object, but misclassified the feature. For the scenarios in this report, the operator

essentially did not have any misses—meaning that the operator always provided an input

for every inspection task. This is of course important for the data collection, as more cases

would have to be run to make up for the ones missed. But not missing is also critical for the

SC. This is because a miss means no information was gained for that inspection task. With

no information, the Unmanned Aerial Vehicle (UAV) will proceed to the next inspection

task in the sequence. This will skew the results if one tries to compare one run with another.

But does wash out with large numbers.

The plan tracking by the autopilot was uniformly excellent. The object was

consistently in the middle of the camera footprint (video), and went completely through

from top to bottom. This would have been difficult, if not impossible, to achieve with a

fixed camera if there was wind and/or gusts. Also, all of the inspection tasks were reviewed

to ensure that the feature was always visible. The operator did not have a “Can’t See”

choice.
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Appendix C: UAV Definition

The Vigilant Spirit Control Station (VSCS) has a number of Unmanned Aerial Vehicle

(UAV)s that can be simulated. The one used here is similar to the Bat3. It is gas powered,

has a wingspan of 9 feet, and a gimballed camera. For the purposes of this effort, the most

critical specifications are the speed range [15 knots–50 knots], turn rate [2 g’s], and the

camera [fixed]. Speed and turn rate are needed to compute the turn radius, which is needed

to determine the Dubins path. The sensor geometry is shown in Figure C.1. The camera

Figure C.1: Sensor Geometry and Footprint

is fixed to limit the degrees of freedom in sensor planning that would be introduced with a

gimballed camera. As can be seen in Figure C.1, the camera has a fixed depression angle

θ of 45 degrees. The vertical field of view (VFOV) is 22 degrees, and the horizontal FOV

(HFOV) is also 22 degrees. This gives a reasonably rectangular (trapezoid) footprint. This

footprint will vary in size as a function of altitude above ground level (AGL=h). The
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Above Ground Level (AGL) and footprint gives Ground Sample Distance (GSD) and/or

pixels-on-target. GSD is more generic and is used as one of the independent variables in

the operator error (performance) model. The equation for GSD is:

GS D = FOV ·
AGL
cos θ

The equation for the footprint length is:

L =
h

tan(θ − VFOV/2)
−

h
tan(θ + VFOV/2)

The Dwell time is then the footprint length L divided by the UAV speed. Note that the

Dwell time is not the operator response time.

There is no wind in the UAV simulation, so that the air speed = ground speed, and UAV

heading = ground track heading (no sideslip). This greatly simplifies the path planning

problem and the ability of the autopilot to track the plan. While having wind would be

more realistic, it greatly increases the variability in the data gathering (model) and the

SC evaluation. It is much more difficult to keep the Target in the footprint. This would

necessitate many more samples to ensure that sufficient samples were available to cover

the Dwell times in the operator model.

However, with a body axis fixed sensor, the footprint cannot remain on the plan while

turning. This would require a gimballed sensor. Therefore, a standoff distance must be

enforced, before the Target is reached, for the UAV to be on the planned path and wings

level.
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Appendix D: Operator Briefing

Operator Training Bullets

Interface layout

• Left monitor is the “God’s eye” view of the map. It shows all of your UAVs and

their locations. Not really necessary to focus on the map for these trials because the other

monitor will alert you to an approaching point of interest.

• Right monitor is the 4 camera views of the UAVs: MUSCIT 21 (top left), MUSCIT

22 (top right), MUSCIT 23 (bottom left), MUSCIT 24 (bottom right).

• “Target” and “Non-Target” buttons to the right of each camera view are the buttons

that apply to that respective camera.

• The operator is to sit 32inches from the display screen (eyeball to screen), which is

marked on the side table. The operator is not to squint or lean forward.

Task

• Action: Provide participant with the pictures that show the vehicles with the Y and

V shapes

• Press the “Target” button when you see a vehicle with a Y shape.

• Press the “Non-Target” button when you see a vehicle with a V shape.

• One way to distinguish between Targets from Non-Targets is the stem at the bottom

of the letter.

• If there is some uncertainty as to whether or not the vehicle is a target or non-target,

simply make your best guess. (Unless requested otherwise.)

• All vehicles will be white and the letters will be black and upright.

• Area surrounding the buttons will cue you by highlighting “red” approximately 2-3

seconds before the UAV passes over the vehicle of interest.
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• Could have multiple camera views highlight red simultaneously (or close to simul-

taneously). You are still responsible for classifying all vehicles so do your best to identify

each vehicle as target or non-target.

• For each button push, the operator is to render a number from 1–5, signifying the op-

erator’s confidence in the Target/NonTarget decision. (1-no confidence, 2-low confidence,

3-moderate confidence, 4-high confidence, 5-high confidence.) This will be recorded by

the test director.

Miscellaneous

• Let the test director know if you accidentally hit the wrong button and you “without

a doubt” know that you hit the wrong button.

• The buttons, on occasion, will remain highlighted red or immediately return to a red

highlight. Simply hit the button again. The test director will monitor.

• Target density is approximately 50%.

• The operator is to have 20-20 vision and not be color blind.

• Each run will be approximately 12 minutes long.

Training threshold

• Set at 70% average over all runs for Ptr and Pftr.
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Appendix E: Experiment 1 Pilot Data: Operator S0

The instructions to the operator by the test supervisor are given in Appendix D. The

operator was told to “do the best you can” and no performance feedback was provided.

E.0.1 Test0: Familiarization - baseline, 50% density.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 30.00 55.56 33.33 0.00 57.50

Just to reiterate, Operator S0 looks at each of 20 objects in a Run and determines

whether the object is a Target or a Nontarget. The single familiarization Run has a Target

density of 50%, which always gives exactly 10 Targets and 10 NonTargets. There are 4

Scenarios, numbered 1–4, where the objects have different locations and values. The A in

1A signifies that this is the 1st occurrance of Scenario 1 in a operator data taking session.

The FA1 signifies the 1st look False Alarm rate and MD1 is the 1st look Missed Detection

rate. In this case, of the 10 NonTargets, the operator said 3 were actually Targets. Very

rarely the operator fails to provide an observation on an object, and that is counted as a

“miss”, which is the case here. The MD1 is then computed as 5/9.

The FA2 and MD2 operator observations are for the 2nd look. The number of revisit

opportunities are set in the Stochastic Controller, and for this project, set at 3. This means

of the 5 objects that are inspected per Unmanned Aerial Vehicle (UAV), only 3 can be

revisited to provide additional information. For the 4 UAVs in a Run, that gives a total

of 12 objects that can be revisited. But the ratio can be 6T/6NT, as it is here, or it can

be 3T/9NT, or 4T/8NT, and so forth. For this Run, the operator did not misclassify any

of the Targets on revisit, but did misclassify a third of the NonTargets on revisit. The
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Percent Correct, or PC performance metric was not used until later, but is introduced here

for continuity. The Percent Correct (PC) is simply the percentage of the objects that the

operator classified correctly. This can be computed as PC = ((100−FA) + (100−MD))/2.

Previous research has suggested that if the operator does not favor Targets or NonTargets,

then the operator is not “biased” and will try to maximize PC. Unless stated otherwise, for

all the Runs the operator is instructed to “do the best you can”, which is interpreted to mean

maximize PC.

The problem these series of tests was intended to address was very low False Alarm

(FA) and Missed Detection (MD) rates, caused by the scenarios being too easy. The low

performance in Test0 of PC=57.5%, or nearly random, could be ascribed to the operator

never having seen the NonTarget feature V until the familiarization run was underway.

E.0.2 Test1/2: 50ft+, fast, 50% density.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 10 10 0 10 90
2 2A 30 30 75 0 70
3 3A 30 30 0 0 70
4 4A 10 20 0 0 85
5 1B 10 10 0 0 90
6 2B 10 10 0 0 90
7 3B 10 10 0 11 90
8 4B 30 20 0 12 75

This test constituted the baseline for the remaining tests. For the 8 runs, the average

FA1=17% and the average MD1=17%. The average PC=83% with reasonably consistent

results between runs, given that this is a stochastic process with significant variations. The

operator performance at the revisit state is excellent except for run 2 where FA2=75%.

This may be an outlier. The operator model called LEAPModel13 plus50ft.xml is used

by the SC for the revisit state calculation, where the model is a modification of the LEAP II
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operator model called LEAPModel13.xml. There is an unknown amount of error between

Operator S0 and LEAPModel13 plus50ft.xml. However, the revisit state appears to be a

good choice. In summary, this condition appears to be a reasonably good point of departure.

E.0.3 Test3: 50ft+, fast, 50% density, biased.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 50 0 0 0 75
2 2A 50 10 0 0 70
3 3A 0 20 0 22 90
4 4A 0 20 0 0 90

Test3 is the same as Test1/2 except the operator was instructed to be more liberal.

In others words, when the operator is in doubt, say Target. One would think that this

instruction would reduce the MD1 rate and drive up the FA2 rate. And initially, this seems

to be what happened in Scenario 1A and 2A. However, in Scenario 3A and 4A the results

went exactly in the other direction. On average, FA1=25%, MD1=12%, and PC=81%.

However, there are large fluctuations. If the trendlines continue, then the MD rate will be

increasing and the FA rate will be decreasing. One explanation is that the operator is having

trouble calibrating the bias, and the prediction is the operator performance will be erratic.

With no feedback, the operator bias could change dynamically in longer runs. Therefore,

it was decided not to pursue the “bias” line of investigation to increase the FA rate at the

present time.
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E.0.4 Test4: 25ft+, fast, 50% density.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 10 10 0 0 90
2 2A 0 0 0 0 100
3 3A 20 10 0 0 85
4 4A 0 0 0 0 100

Test4 was run to determine the sensitivity to the baseline altitude of 50ft+. This was

changed to 25ft+, which is a net reduction in altitude of 25ft. The operator performance

improved from the baseline of FA=MD=17% to FA=7%, MD=5%, and PC=94%. This

was more than expected, so operator performance is quite sensitive to altitude. Increasing

the altitude even further is done in Test8/9. Tests6/7 investigate changes in density.

E.0.5 Test5: familiarization - 50ft+, fast, 5% density.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 26 0 0 0 87

This is the first low density scenario that Operator S0 has seen, and for this reason it

was decided to treat it separately as a familiarization run. The operator was not told that

the scenario has 5% target density, or even that it is low density. It appears the operator

proceeded as if the scenario was high density—this would explain the FA1=26% result.

There is only one Target, so MD1 will be either 0% or 100%. The operator was fortunate

in this case. The next test, Test6, should give a truer estimate of the operator error at low

density.
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Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 5 0 0 0 97.5
2 2A 10 0 0 0 95
3 3A 5 0 0 0 97.5
4 4A 10 0 0 0 95
5 1B 15 100 8 0 42.5
6 2B 5 100 0 0 47.5
7 3B 0 0 0 0 100
8 4B 0 0 0 0 100
9 1C 0 0 0 0 100

10 2C 5 100 0 0 47.5

E.0.6 Test6: 50ft+, fast, 5% density.

The average FA1=5.5%, MD1=33%, and PC=80.75%. However, there are only 10

Target samples in Test6. Many more tests would need to be run to be able to make a

confident estimate of MD1. This is a fundamental problem with all low density scenarios—

few target observations. While the distribution of Type I and Type II errors have changed,

the PC=80.75% is quite close to the baseline PC=83%. After the familiarization run, the

operator felt that there were 1,2, or 3 Targets in each run. In actuality, there were 1 or

2 Targets viewed, depending on whether the controller revisited the single target. The

operator said that if the Target came early in the scenario, then felt confident in saying rest

are not Targets. If the Target came late, then had a tendency to have 1 or 2 FAs.

E.0.7 Test7: 50ft+, fast, 25% density.

Test7 has 25% density with 15 NonTargets and 5 Targets per run. There is at least 1

Target per UAV and 1 UAV will have 2 Targets. There are not enough scenarios so that all

the combinations of UAV and position are represented. The average FA1=2%, MD1=14%,

and PC=92%.

To summarize: at 50% density, PC=83%; at 25% density, PC=92%; and at 5% density,

PC=80%. It is not at all clear why PC would increase so significantly at 25% density.
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Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 0 0 0 20 100
2 2A 6.7 20 0 25 86.5
3 3A 0 20 0 0 90
4 4A 0 20 0 0 90
5 1B 0 20 0 20 90
6 2B 0 40 0 20 80
7 3B 6.7 0 0 0 96.7
8 4B 0 0 0 0 100
9 1C 0 20 0 0 90

10 2C 6.7 0 0 0 96.7

However, the total number of errors appears to decrease with density. At 50% density there

are 17.5 errors per 100 objects; at 25% density there are 5 errors per 100 objects; and at 5%

density there are 7 errors per 100 objects. Clearly the operator’s performance changes with

density. Further investigations of density effects were curtailed in favor of investigating

additional increases in altitude to increase FA rate.

E.0.8 Test8: 100ft+, fast, 25% density.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 6.7 40 0 0 77
2 2A 6.7 0 0 0 96
3 3A 6.7 0 0 0 96
4 4A 13 20 0 0 83
5 1B 6.7 0 0 20 96

Test8 raises the altitude by 100ft at 25% density. Test8 has average FA=8%,

MD=12%, and PC=90%. There is an interaction between the increase in altitude and the

decrease in density from the baseline. Here, both FA and MD went down, with FA going

down much more than MD. The main difference from Test7 is that the altitude increase

caused the FA rate to increase from 2% to 8%.
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E.0.9 Test9: 100ft+, fast, 50% density.

Run Scenario FA1% MD1% FA2% MD2% PC%

1 1A 10 20 0 0 77
2 2A 10 10 0 11 96
3 3A 0 30 0 11 96
4 4A 10 30 0 0 83
5 1B 0 20 0 20 96

Test9 is the last perturbation in altitude and density to determine their effect on

operator performance. At 100ft+ increment in altitude and 50% density, average FA=6%,

MD=22%, and PC=86%. Compared to the baseline Test1, FA rate decreased by a factor

of 4, the MD rate increased by 30%, and PC was about the same. The 5 runs of data is not

a big enough sample to draw conclusions, but the tentative observation is that increasing

the altitude as well as decreasing the density has the effect of significant decreases in FA

rate. This, of course, does not achieve the desired effect of increasing FA rate, where a

FA=20%–25% was the nominal design point for the Stochastic Controller.

E.0.10 Test Results Summary.

Date Density ∆ Altitude Speed Bias FA MD PC

11-12 Apr 50% +50 + ”best” 17% 17% 83%
16 Apr 50% +50 + ”liberal” 25% 12% 81%
17 Apr 50% -25 + ”best” 7% 5% 94%

22-23 Apr 5% +50 + ”best” 5% 30% 82%
8-9 May 25% +50 + ”best” 2% 14% 92%
16 May 25% +100 + ”best” 8% 12% 90%
20 May 50% +100 + ”best” 6% 22% 86%
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Appendix F: Interim Models for Operator S1

F.1 LEAPmodel0808.xml with 25 data runs

This section constitutes the first 25 runs of the total 120 runs to develop the final

operator error model. The approach taken in these 120 data runs does not follow a more

conventional approach as typified in LEAP II. The conventional approach would separate

the estimation and control and perform them sequentially in different simulations. The

model estimation would consist of the development of model scenarios that consisted of 16

discrete states that are composed of the high and low values of the 4 independent variables

of Ground Sample Distance (GSD), Aspect Angle (AA), Dwell Time (DT), and Inter-

Event Time (IET). A relatively complex bookkeeping scheme is needed to ensure there are

100 samples at each of the 16 states for both the Target and NonTarget. This is a more

difficult task than it looks, given that IET in particular is a difficult variable to program

independently. Once the data is available, a model can be fitted—of which there are many

methods. Then, the model is inserted into the Stochastic Controller as part of a different

evaluation simulation. This stochastic simulation has continuous independent variables

that dynamically change the revisit state and the IET. The distributions of the model data

and the evaluation data can be, and generally will be, quite different. This can result in

significant modeling error and resultant drop in performance.

The approach pursued here is to simultaneously perform estimation and control in the

exact same simulation. This dual control problem exploits the separation in operator error

data and the evaluation data. The operator error model strictly uses the first look states,

which are (nearly) independent from the second look states commanded by the controller.

They are not completely independent because they are coupled by the IET. However, the

operator model is only a weak function of IET. Therefore, changing the model should have
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little effect on the distribution of the model data in later runs. This has indeed been verified

in practice in later sections.

The original plan was to update the operator model after 25, 50, 75, 100, 125, and

160 runs. But in practice the individual estimates stabilized quicker than expected—this

resulted in updating the model at 25 runs, at 75 runs, and at 120 runs. The first 25 runs were

taken on 2,5,6,7,8 Aug 2013. Prior to the beginning of these and all subsequent runs, the

object vehicles were changed. Previously there were 2 object vehicles, a van and a truck.

The truck and the corresponding feature is larger and therefore the operator has lower net

errors in classifying features on the truck versus the van. Since there are only 4 scenarios,

neither vehicle was seen by the operator at all the 16 states. The error statistics are for

a mixture. It was decided to remove the truck and replace it with the van in all 4 of the

scenarios to ensure consistency. This, however, increased the error rate above the target

limit of FA<25%. It was decided to continue the tests at the higher error rate.

For the 25 runs, the overall FA=34%, MD=15%, and PC=76%. As previously

discussed, this is above the FA target. The closed loop performance has Estimator FA=5%,

MD=10%, and PC=92%. The closed loop performance is calculated from the operator

error model, which for these runs, is LEAPModel13 225to325ft224 455s.xml. The

error statistics for this model are quite similar to the error statistics for the present 25

data runs (which was not planned). Therefore, it could be extrapolated that the Estimator

performance using an operator model derived from 120 runs will be similar to the Estimator

performance here. And so it has proved.

The first 10 runs have FA=[20 60 10 40 40 40 40 40 20 40].

The first 10 runs have MD=[30 0 20 30 20 11 20 0 20 10].

The first 10 runs have PC=[75 70 85 65 70 75 70 80 80 75].

While there is significant variation run to run, averaging over a 10 run horizon quickly
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converges to the long term average. FA10=35%, MD10=16%, and PC10=75%, which is

only 1% off the 25 run average. A minimum of 10 runs is used to report average statistics.

F.1.1 Operator Model LEAPmodel0808.xml.

The histograms below show the the distribution of the 4 independent variables that

are used to make the operator error model. In Figure F.1 can be seen, from the data,

that altitude varies from low 225ft Above Ground Level (AGL) to high 325ft AGL which

is equivalent to low GSD=0.1909ft/pixel and high GSD=0.2757ft/pixel respectively for

the fixed camera. In the Vigilant Spirit Control Station (VSCS) Cooperative Control

Algorithms (CCA) simulation, the GSD is uniformly sampled between the high and low

values. The simulation takes the low and high values from the operator error model itself.

The actual achieved values, as shown in the example data file in Appendix I, are within a

couple of feet of the planned. The actual values are what is used in the operator model data.

The distribution is quite reasonable for 500 random samples.
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Figure F.1: Altitude Distribution
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In Figure F.2 can be seen the Aspect Angle data which varies from low 45deg to high

90deg. The simulation also takes the high and low values from the operator error model.

The uniform random distribution is closely approximated by the data.
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Figure F.2: Aspect Angle Distribution

In Figure F.3 is the data for the Dwell Time, or the time duration of the object in

the viewing frame. This varies from a low 2.24sec to high 4.55sec. The data closely

approximates a uniform random distribution.

Finally, Figure F.4 shows the Inter Event Time data distribution, where IET is the time

between subsequent viewings of objects. The IET is not controlled in the simulation and

the low and high values are not used in the CCA planner. The IET is the result of the

planner and the controller. It is not realistic to try and control the IET. As can be seen, it is

not even approximately uniform. The approach is to use the median of the data (15sec) to

divide between low and high.
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Figure F.3: Dwell Time Distribution
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Figure F.4: IET Distribution

To create the operator error model, the data is divided into bins. The midpoint of the

independent variables is GSD=0.233, AA=67.5, Dwell=3.395, and IET=15. The resulting
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16 bin combinations of the data are shown in Table F.1 in columns 2–5. Since 25 runs, at

50% density, has 250 Targets and 250 NonTargets, then column 6 and column 9 add up to

250 (unless there is a “miss”). What is important is the distribution of the samples over the

16 states, which if perfectly distributed, is 16 samples/state. The NonTarget distribution has

a max of 22 samples for state 9, a min of 10 samples at state 5, a mean of 15.6 samples, and

Standard Deviation (std) of 4.1 samples. The Target distribution has a max of 26 samples at

state 15, a min of 7 samples at state 1, a mean of 15.6 samples, and std of 5.4 samples. The

NonTarget distribution is excellent, and the Target distribution, while not excellent, is still

quite good. There are no 0 sample bins and no bins that are highly over represented. There

are, however, 2 states, 6 and 8, that have no hits and consequently has FA identically equal

to 0. These “perfect” states could bias the stochastic controller as well as cause an error

in the mutual information calculation. For these reasons, the calculation is made where

FA=.5/n where n is the number of samples. A similar problem occurs for MD at state 7.

Table F.1: Operator Model Data F0808

State GSD Angle Dwell IET Samples Hits FA Samples Hits MD
1 0.1909 45 2.24 0 21 6 0.2857 7 6 0.1428
2 0.1909 45 2.24 30 18 4 0.2222 16 15 0.0625
3 0.1909 45 4.55 0 11 3 0.2727 11 9 0.1818
4 0.1909 45 4.55 30 13 2 0.1538 24 21 0.125
5 0.1909 90 2.24 0 10 2 0.2 14 11 0.2142
6 0.1909 90 2.24 30 14 0 0.0357 10 9 0.1
7 0.1909 90 4.55 0 12 2 0.1666 14 14 0.0357
8 0.1909 90 4.55 30 14 0 0.0357 9 8 0.1111
9 0.2757 45 2.24 0 22 9 0.4090 20 16 0.2

10 0.2757 45 2.24 30 16 13 0.8125 16 15 0.0625
11 0.2757 45 4.55 0 20 9 0.45 21 15 0.2857
12 0.2757 45 4.55 30 16 9 0.5625 14 13 0.0714
13 0.2757 90 2.24 0 13 6 0.4615 19 15 0.2105
14 0.2757 90 2.24 30 10 4 0.4 12 11 0.0833
15 0.2757 90 4.55 0 21 8 0.3809 26 21 0.1923
16 0.2757 90 4.55 30 19 8 0.4210 16 14 0.125
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For the operator error model Table F.1, the overall FA=33%, MD=14%, and

PC=76.5%. There is no more than a 1% difference with the overall data results that were

discussed earlier. This means that the operator error model is an overall good fit to the data.

The individual state values will improve over time as more and more data is added to the

model. This will be seen in later sections. It is fairly clear that the 8 low altitude states have

a much lower error than the 8 high altitude states. This agrees with intuition. The “best”

states are 7,8 and the “worst” states are 9,10—which also agrees with intuition. These

results will be consistently true over the next 2 models. The low altitude states and the high

altitude states appear to be fairly consistent for MD. There does not appear to be a standout

“bad” state for MD. This is not the case for FA, where all the high altitude states are ≥

40%. This means that the operator, for a NonTarget at high altitude, is essentially guessing.

The exception at state 10 has FA=81%. This means the operator is a contra-indicator—if

the operator says it’s a Target, there’s a high probability it isn’t. As will be seen, as more

data becomes available for later models, these probabilities will reduce. Also, the revisit

state computed by the Stochastic Controller remains consistently the same for all 3 of the

operator error models.

F.2 LEAPmodel0828.xml with total 75 data runs

Analysis of Model Change with 10 runs

The first action taken here is to verify that the 1st look data used for the operator model is

reasonably independent from the controller. This would mean that the operator model can

justifiably be incrementally updated over the data runs, yet all the 1st look data can be used

for the new operator error model. The 10 runs before the 0808 model update is compared

to the 10 runs just after the 0808 model update. The prior 10 runs from 201307,08 have

operator FA=31%, MD=16%, and PC=76.5%. The 10 runs from 20130813,14 just after

the 0808 model update have operator FA=35%, MD=25%, and PC=70%. This is enough

of a difference to warrant investigation. If you look at the PC for these 10 runs, you get
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PC=[70 70 75 65 75 80 65 40 70 90]. Run 8, or run labeled 20131431, looks like it may be

an outlier with a PC=40%. If the 40% is replaced with the prior mean of 75%, then the new

mean of the 20130813,14 data set is PC=74%. This is quite reasonable compared to the

201307,08 data set PC=76.5%. Also, the std of the new augmented data set is 7.4%, which

means the 8th data run with PC=40% is almost 5 std out. A metric of 3 std is used to define

an outlier. Further evidence of an outlier is that run 20131431 has 2nd look FA=57% and

MD=20%. This is by far the largest 2nd look error rate in all of the 120 runs. The surmise

is that there was some as yet unknown error in setup or simulation. This event has not been

repeated. When 20131431 has been removed from the data set, then operator FA=33%,

MD=23%, and PC=71.7%.

While the FA rate before and after model change is about the same, the MD has

increased from 16% to 23%. This is not an insignificant change. Further investigation

revealed some rounding error in GSD that resulted in approximately a 4ft error in the GSD

limits. This was not thought to be significant. There may indeed be more coupling between

the estimator and the controller, and/or the data may not be as representative as thought.

Regardless, the approach appears to be working reasonably well and the decision was made

to continue taking data with model 0808.

Analysis of Model Change with 25 runs

If you look at the 25 runs before and after the model change, you get:

Before; operator FA=34%, operator MD=15.5%

After; operator FA=35.8%, operator MD=20%

Note, the after statistics actually use 24 runs with the outlier taken out. This is similar to

the previous 10 run comparison, where there seems to be a persistent increase in the MD

rate. But essentially no change in the FA rate. Some of this may still be from stochastic

variation, but it looks less likely as the number of samples increase. There may be some

slight change in the operator bias that is somehow correlated with the model change. These
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effects will be washed out as the number of samples is increased. Interestingly, there is no

change at all in the estimator performance:

Before; estimator FA=5.2%, estimator MD=10.4%

After; estimator FA=5.8%, estimator MD=10.5%

This indicates that the Estimator is robust to limited variations in the operator error model.

Analysis of Model Change with 50 runs

This analysis is for 50 runs from 20130813 to 20130828. The comparison is now:

Before; operator FA=34.0%, operator MD=15.5%, operator PC=75%

After; operator FA=37.6%, operator MD=18.0%, operator PC=72%

While only 25 runs are available before the model change, the conjecture can be made that

if 50 runs had been run before the change and the results compared to the 50 runs after

the change, then there would be little change. The conclusion can be made that the model

change has made little change in the operator data, and the concurrent approach to the

estimator and controller is valid.

F.2.1 LEAPmodel0828.xml.

There were 75 total runs from 20130802 to 20130828 available to create the 0828

operator error model.

For the operator error model Table F.2, the overall FA=36%, MD=17%, and

PC=73.5%. There are an average of 46 samples per state. There is still more variance

between the targets states than the nontarget states. In general, there is no more than about

10% of full scale difference for FA and MD between 0808 and 0828. This indicates that a

sufficient number of samples is being approached for a reasonable estimate of the individual

states. At this point it was decided that 120 runs would probably be adequate for the final

operator error model, which gives, on average, 75 samples per state.
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Table F.2: Operator Model Data F0828

State GSD Angle Dwell IET Samples Hits FA Samples Hits MD
1 0.1909 45 2.24 0 52 21 0.4038 29 25 0.1378
2 0.1909 45 2.24 30 46 19 0.4130 43 40 0.0698
3 0.1909 45 4.55 0 27 6 0.2222 39 35 0.1026
4 0.1909 45 4.55 30 49 10 0.2041 52 46 0.1154
5 0.1909 90 2.24 0 30 3 0.1000 40 35 0.1250
6 0.1909 90 2.24 30 40 7 0.1750 32 30 0.0625
7 0.1909 90 4.55 0 41 3 0.0732 43 40 0.0698
8 0.1909 90 4.55 30 40 0 0.0125 40 39 0.0250
9 0.2757 45 2.24 0 51 27 0.5294 58 40 0.3103

10 0.2757 45 2.24 30 56 41 0.7321 38 32 0.1579
11 0.2757 45 4.55 0 54 21 0.3889 64 46 0.2813
12 0.2757 45 4.55 30 47 21 0.4468 39 32 0.1795
13 0.2757 90 2.24 0 47 23 0.4894 62 46 0.2581
14 0.2757 90 2.24 30 50 24 0.4800 44 34 0.2273
15 0.2757 90 4.55 0 52 22 0.4231 69 55 0.2029
16 0.2757 90 4.55 30 58 21 0.3621 45 38 0.1556
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Appendix G: Operator Model matlab file

% ---------------------------------------------------------------------------

% BEGIN operator model m file

% This program creates the operator error model from the specified log files.

% Source file: analyzeStates5.m, dated 11/5/2013, by pc

% The continuous state [GSD,AA,Dwell,IET] data from the logFiles

% is binned into 16 discrete states. The FA and MD are tabulated

% for each of the states to yield Pfa and Pmd.

% Procedure

% Read logFiles

% Create 16 state model - ModelDataPR

% Create 256 state model - OpModelDataP256

% Create 256 state xml model - OpModelDataP256xxxx.xml

clear all

close all

% This represents the final configuration

% after the final change in the contrast.

% Runs 1-25 use LEAPModel13_225to325ft224_455s.xml
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logFiles{1} = ’C:\...\S Final\20130802_1_1.csv’;

logFiles{2} = ’C:\...\S Final\20130802_2_1.csv’;

logFiles{3} = ’C:\...\S Final\20130802_3_1.csv’;

logFiles{4} = ’C:\...\S Final\20130802_4_1.csv’;

logFiles{5} = ’C:\...\S Final\20130802_1_2.csv’;

logFiles{6} = ’C:\...\S Final\20130805_1_1.csv’;

logFiles{7} = ’C:\...\S Final\20130805_2_1.csv’;

logFiles{8} = ’C:\...\S Final\20130805_3_1.csv’;

logFiles{9} = ’C:\...\S Final\20130805_4_1.csv’;

logFiles{10} = ’C:\...\S Final\20130805_2_2.csv’;

logFiles{11} = ’C:\...\S Final\20130806_1_1.csv’;

logFiles{12} = ’C:\...\S Final\20130806_2_1.csv’;

logFiles{13} = ’C:\...\S Final\20130806_3_1.csv’;

logFiles{14} = ’C:\...\S Final\20130806_4_1.csv’;

logFiles{15} = ’C:\...\S Final\20130806_3_2.csv’;

logFiles{16} = ’C:\...\S Final\20130807_1_1.csv’;

logFiles{17} = ’C:\...\S Final\20130807_2_1.csv’;

logFiles{18} = ’C:\...\S Final\20130807_3_1.csv’;

logFiles{19} = ’C:\...\S Final\20130807_4_1.csv’;

logFiles{20} = ’C:\...\S Final\20130807_4_2.csv’;

logFiles{21} = ’C:\...\S Final\20130808_1_1.csv’;

logFiles{22} = ’C:\...\S Final\20130808_2_1.csv’;
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logFiles{23} = ’C:\...\S Final\20130808_3_1.csv’;

logFiles{24} = ’C:\...\S Final\20130808_4_1.csv’;

logFiles{25} = ’C:\...\S Final\20130808_1_2.csv’;

% From run 26-75 LEAPmodel88.xml is used. Based on files 1-25.

logFiles{26} = ’C:\...\S Final\20130813_1_1.csv’;

logFiles{27} = ’C:\...\S Final\20130813_2_1.csv’;

logFiles{28} = ’C:\...\S Final\20130813_3_1.csv’;

logFiles{29} = ’C:\...\S Final\20130813_4_1.csv’;

logFiles{30} = ’C:\...\S Final\20130813_2_2.csv’;

logFiles{31} = ’C:\...\S Final\20130814_1_1.csv’;

logFiles{32} = ’C:\...\S Final\20130814_2_1.csv’;

logFiles{33} = ’C:\...\S Final\20130814_3_1.csv’;

logFiles{34} = ’C:\...\S Final\20130814_4_1.csv’;

logFiles{35} = ’C:\...\S Final\20130814_3_2.csv’;

logFiles{36} = ’C:\...\S Final\20130815_1_1.csv’;

logFiles{37} = ’C:\...\S Final\20130815_2_1.csv’;

logFiles{38} = ’C:\...\S Final\20130815_3_1.csv’;

logFiles{39} = ’C:\...\S Final\20130815_4_1.csv’;

logFiles{40} = ’C:\...\S Final\20130815_4_2.csv’;

logFiles{41} = ’C:\...\S Final\20130816_1_1.csv’;

logFiles{42} = ’C:\...\S Final\20130816_2_1.csv’;
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logFiles{43} = ’C:\...\S Final\20130816_3_1.csv’;

logFiles{44} = ’C:\...\S Final\20130816_4_1.csv’;

logFiles{45} = ’C:\...\S Final\20130816_1_2.csv’;

logFiles{46} = ’C:\...\S Final\20130820_1_1.csv’;

logFiles{47} = ’C:\...\S Final\20130820_2_1.csv’;

logFiles{48} = ’C:\...\S Final\20130820_3_1.csv’;

logFiles{49} = ’C:\...\S Final\20130820_4_1.csv’;

logFiles{50} = ’C:\...\S Final\20130820_2_2.csv’;

logFiles{51} = ’C:\...\S Final\20130821_1_1.csv’;

logFiles{52} = ’C:\...\S Final\20130821_2_1.csv’;

logFiles{53} = ’C:\...\S Final\20130821_3_1.csv’;

logFiles{54} = ’C:\...\S Final\20130821_4_1.csv’;

logFiles{55} = ’C:\...\S Final\20130821_3_2.csv’;

logFiles{56} = ’C:\...\S Final\20130822_1_1.csv’;

logFiles{57} = ’C:\...\S Final\20130822_2_1.csv’;

logFiles{58} = ’C:\...\S Final\20130822_3_1.csv’;

logFiles{59} = ’C:\...\S Final\20130822_4_1.csv’;

logFiles{60} = ’C:\...\S Final\20130822_4_2.csv’;

logFiles{61} = ’C:\...\S Final\20130826_1_1.csv’;

logFiles{62} = ’C:\...\S Final\20130826_2_1.csv’;

logFiles{63} = ’C:\...\S Final\20130826_3_1.csv’;

logFiles{64} = ’C:\...\S Final\20130826_4_1.csv’;
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logFiles{65} = ’C:\...\S Final\20130826_1_2.csv’;

logFiles{66} = ’C:\...\S Final\20130827_1_1.csv’;

logFiles{67} = ’C:\...\S Final\20130827_2_1.csv’;

logFiles{68} = ’C:\...\S Final\20130827_3_1.csv’;

logFiles{69} = ’C:\...\S Final\20130827_4_1.csv’;

logFiles{70} = ’C:\...\S Final\20130827_2_2.csv’;

logFiles{71} = ’C:\...\S Final\20130828_1_1.csv’;

logFiles{72} = ’C:\...\S Final\20130828_2_1.csv’;

logFiles{73} = ’C:\...\S Final\20130828_3_1.csv’;

logFiles{74} = ’C:\...\S Final\20130828_4_1.csv’;

logFiles{75} = ’C:\...\S Final\20130828_3_2.csv’;

% Used on runs 76-120, the OpModeldata250F0828 based on files 1-75.

logFiles{76} = ’C:\...\S Final\20130830_1_1.csv’;

logFiles{77} = ’C:\...\S Final\20130830_2_1.csv’;

logFiles{78} = ’C:\...\S Final\20130830_3_1.csv’;

logFiles{79} = ’C:\...\S Final\20130830_4_1.csv’;

logFiles{80} = ’C:\...\S Final\20130830_4_2.csv’;

logFiles{81} = ’C:\...\S Final\20130904_1_1.csv’;

logFiles{82} = ’C:\...\S Final\20130904_2_1.csv’;

logFiles{83} = ’C:\...\S Final\20130904_3_1.csv’;

logFiles{84} = ’C:\...\S Final\20130904_4_1.csv’;
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logFiles{85} = ’C:\...\S Final\20130904_1_2.csv’;

logFiles{86} = ’C:\...\S Final\20130905_1_1.csv’;

logFiles{87} = ’C:\...\S Final\20130905_2_1.csv’;

logFiles{88} = ’C:\...\S Final\20130905_3_1.csv’;

logFiles{89} = ’C:\...\S Final\20130905_4_1.csv’;

logFiles{90} = ’C:\...\S Final\20130905_2_2.csv’;

logFiles{91} = ’C:\...\S Final\20130906_3_1.csv’;

logFiles{92} = ’C:\...\S Final\20130909_1_1.csv’;

logFiles{93} = ’C:\...\S Final\20130909_2_1.csv’;

logFiles{94} = ’C:\...\S Final\20130909_3_2.csv’;

logFiles{95} = ’C:\...\S Final\20130909_4_1.csv’;

logFiles{96} = ’C:\...\S Final\20130911_1_1.csv’;

logFiles{97} = ’C:\...\S Final\20130911_2_1.csv’;

logFiles{98} = ’C:\...\S Final\20130911_3_1.csv’;

logFiles{99} = ’C:\...\S Final\20130911_4_1.csv’;

logFiles{100}= ’C:\...\S Final\20130911_4_2.csv’;

logFiles{101}= ’C:\...\S Final\20130913_1_1.csv’;

logFiles{102}= ’C:\...\S Final\20130913_2_1.csv’;

logFiles{103}= ’C:\...\S Final\20130913_3_1.csv’;

logFiles{104}= ’C:\...\S Final\20130913_4_1.csv’;

logFiles{105}= ’C:\...\S Final\20130913_1_2.csv’;
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logFiles{106}= ’C:\...\S Final\20130916_1_1.csv’;

logFiles{107}= ’C:\...\S Final\20130916_2_1.csv’;

logFiles{108}= ’C:\...\S Final\20130916_3_1.csv’;

logFiles{109}= ’C:\...\S Final\20130916_4_1.csv’;

logFiles{110}= ’C:\...\S Final\20130916_2_2.csv’;

logFiles{111}= ’C:\...\S Final\20130919_1_1.csv’;

logFiles{112}= ’C:\...\S Final\20130919_2_1.csv’;

logFiles{113}= ’C:\...\S Final\20130919_3_1.csv’;

logFiles{114}= ’C:\...\S Final\20130919_4_1.csv’;

logFiles{115}= ’C:\...\S Final\20130919_3_2.csv’;

logFiles{116}= ’C:\...\S Final\20130920_1_1.csv’;

logFiles{117}= ’C:\...\S Final\20130920_2_1.csv’;

logFiles{118}= ’C:\...\S Final\20130920_3_1.csv’;

logFiles{119}= ’C:\...\S Final\20130920_4_1.csv’;

logFiles{120}= ’C:\...\S Final\20130920_4_2.csv’;

% OpModelData256F0920.xml is based on all previous 120 files.

i_type = 1; %entry (1 = first, 2 = revisit, 3 = alert set, 4 = in footprint)

i_time = 2;

i_vehID = 3;

i_vehHdg_deg = 4;

i_vehAltMSL_ft = 5;

105
Approved for public release; distribution unlimited.



i_POIID = 6;

i_POILat_deg = 7;

i_POILong_deg = 8;

i_POIAltMSL_ft = 9;

i_POIHdg_deg = 10;

i_AAdes_deg = 11;

i_GSDdes_ft = 12;

i_AAact_deg = 13;

i_GSDact_ft = 14;

i_DTact_s = 15;

i_IETact_s = 16;

i_PTR = 17; % Correct detection rate

i_PFTR = 18; % False alarm rate

i_PT1 = 19; % Prob of being a traget given report 1

i_PT2 = 20; % Prob of being a target given report 2

i_bTarget = 21; % Target truth data (only shows up on reports 1 and 2)

i_APD = 22; % Apriori density

i_revNum = 23; % Revisit number

i_revLeft = 24; % Revisits left

i_res = 25; % Operator response (1 = target, 0 = no target)

i_revDec = 26; % Revisit decision (0 = no revisit, >0 revisit state)

i_revAAdes_deg = 27; % commanded revisit Aspect angle

i_revGSDdes_ft = 28; % commanded revisit GSD

i_revAltdes_MSL_ft = 29; % Commanded revisit altitude

i_reviAA = 30;

i_reviGSD = 31;
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i_reviDT = 32;

i_revIET = 33;

%i_cmdDT = 34; % commanded dwell time

%i_cmdSpeed = 35; % commanded speed

%i_actSpeed = 36; % actual speed

%i_confidence = 37; % operator confidence level 1-5

% Compile all runs

data = [];

i_logs = 1:120;

%i_logs = [26:32,34:50,51];

%i_logs = [26:32,34:60];

i_logs = [1:32,34:120];

%i_logs = [1:32,34:75];

for i = i_logs

% newData = readLog(logFiles{i});

newData = xlsread(logFiles{i},’a2:ak97’);

% using xlsread to get data from log file -- k, 7/31/2013

% WARNING!! data in xcel sheet goes from column A to AK (37 columns)

% and rows 2 to 97 (96 rows)

data = [data; newData];

end

% --------------------------------------------------------------------

% BEGIN extraction

first_looks = data(find(data(:,i_type) == 1),:);
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first_FA = first_looks(find(first_looks(:,i_bTarget)==0...

& first_looks(:,i_res)==1),:);

first_MD = first_looks(find(first_looks(:,i_bTarget)==1...

& first_looks(:,i_res)==0),:);

revisits = data(find(data(:,i_type) == 2),:);

revisit_FA = first_looks(find(revisits(:,i_bTarget)==0...

& revisits(:,i_res)==1),:);

revisit_MD = first_looks(find(revisits(:,i_bTarget)==1...

& revisits(:,i_res)==0),:);

% END extraction

% ----------------------------------------------------------------

[hAlt hDwell hAA hIET] = plotStates(first_looks);

% -------------------------------------------------------------------------

% BEGIN state sorting

% Note: the target length and nontarget length need to be even?

% Separate the data into Target and Nontarget.

target_data = first_looks(find(first_looks(:,i_bTarget) == 1),:);

target_length = length(target_data);

target_length2 = round(target_length/2);

%sum(target_data(:,25));
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nontarget_data = first_looks(find(first_looks(:,i_bTarget) == 0),:);

nontarget_length = length(nontarget_data);

nontarget_length2 = round(nontarget_length/2);

%sum(nontarget_data(:,25));

% Extracts states

states_target = [target_data(:,14),target_data(:,13),...

target_data(:,15:16),target_data(:,25)];

states_nontarget = [nontarget_data(:,14),nontarget_data(:,13),...

nontarget_data(:,15:16),nontarget_data(:,25)];

% Sorts by GSD

states_target_sort = sortrows(states_target);

states_nontarget_sort = sortrows(states_nontarget);

% END state sorting

% -------------------------------------------------------------------------

% ------------------------------------------------------------------------

% BEGIN grouping and sort for target data

% This section groups the target data using mean for g,a,d and median for i.

% Note: should have used mean, but it works out to be about the same.

%gMid = (min(states_target_sort(:,1)) + max(states_target_sort(:,1)))/2;
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gMid = 0.2333;

%aMid = (min(states_target_sort(:,2)) + max(states_target_sort(:,2)))/2;

aMid = 67.5;

%dMid = (min(states_target_sort(:,3)) + max(states_target_sort(:,3)))/2;

dMid = 3.395;

%iMid = median(states_target_sort(:,4));

iMid = 17.0;

%iMid = (min(states_target_sort(:,4)) + max(states_target_sort(:,)))/2;

%iMid = 10.0;

%dMid = 3.0;

% This line initializes the labels for each target row by bin number

% (binary 0-16) using column 6-9.

states_target_sort = [states_target_sort,9*ones(size(states_target_sort,1),4)];

% This section labels each target row by bin number.

for i=1:size(states_target_sort,1)

if states_target_sort(i,1) < gMid

states_target_sort(i,6) = 0;

else states_target_sort(i,6) = 1;

end

if states_target_sort(i,2) < aMid

states_target_sort(i,7) = 0;

else states_target_sort(i,7) = 1;

end

if states_target_sort(i,3) < dMid
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states_target_sort(i,8) = 0;

else states_target_sort(i,8) = 1;

end

if states_target_sort(i,4) < iMid

states_target_sort(i,9) = 0;

else states_target_sort(i,9) = 1;

end

end

% This groups the target data by bin (binary) number from 0000 to 1111

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==0);

StatesTargetMid = states_target_sort(r,:);

TargetStateSamples = length(r);

DetectionHits = sum(states_target_sort(r,5));

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==0);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==0...
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& states_target_sort(:,8)==1 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==0);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==0);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==0 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==0);
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StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==0);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==0...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==0);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==0 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];
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TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==0);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)];

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))];

r=find(states_target_sort(:,6)==1 & states_target_sort(:,7)==1...

& states_target_sort(:,8)==1 & states_target_sort(:,9)==1);

StatesTargetMid = [StatesTargetMid;states_target_sort(r,:)];

TargetStateSamples = [TargetStateSamples,length(r)]

DetectionHits = [DetectionHits;sum(states_target_sort(r,5))]

% END grouping and sort for target data

% --------------------------------------------------------------------------

% Repeat for nontarget data

% --------------------------------------------------------------------------

% BEGIN grouping nontarget data

% This section groups the nontarget data using mean for g,a,d and median for i.

% Note: should have used mean, but it works out to be about the same.

%gMid = (min(states_nontarget_sort(:,1)) + max(states_nontarget_sort(:,1)))/2;

gMid = 0.2333;

%aMid = (min(states_nontarget_sort(:,2)) + max(states_nontarget_sort(:,2)))/2;

aMid = 67.5;
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%dMid = (min(states_nontarget_sort(:,3)) + max(states_nontarget_sort(:,3)))/2;

dMid = 3.395;

%iMid = median(states_target_sort(:,4));

iMid = 17.0;

%iMid = (min(states_nontarget_sort(:,4)) + max(states_nontarget_sort(:,)))/2;

%iMid = 8.0;

%dMid = 3.1581;

%aMid = 63.5432;

% This line initializes the labels for each nontarget row by bin number

% (binary 0-16) using column 6-9.

states_nontarget_sort = [states_nontarget_sort,...

9*ones(size(states_nontarget_sort,1),4)];

% This section labels each nontarget row by bin number.

for i=1:size(states_nontarget_sort,1)

if states_nontarget_sort(i,1) < gMid

states_nontarget_sort(i,6) = 0;

else states_nontarget_sort(i,6) = 1;

end

if states_nontarget_sort(i,2) < aMid

states_nontarget_sort(i,7) = 0;

else states_nontarget_sort(i,7) = 1;

end

if states_nontarget_sort(i,3) < dMid

states_nontarget_sort(i,8) = 0;
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else states_nontarget_sort(i,8) = 1;

end

if states_nontarget_sort(i,4) < iMid

states_nontarget_sort(i,9) = 0;

else states_nontarget_sort(i,9) = 1;

end

end

% This groups the nontarget data by bin (binary) number from 0000 to 1111

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = states_nontarget_sort(r,:);

NonTargetStateSamples = length(r);

FalseDetections = sum(states_nontarget_sort(r,5));

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==1);
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StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==0 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];
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NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==0...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==0 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];
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FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==0);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)];

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))];

r=find(states_nontarget_sort(:,6)==1 & states_nontarget_sort(:,7)==1...

& states_nontarget_sort(:,8)==1 & states_nontarget_sort(:,9)==1);

StatesNonTargetMid = [StatesNonTargetMid;states_nontarget_sort(r,:)];

NonTargetStateSamples = [NonTargetStateSamples,length(r)]

FalseDetections = [FalseDetections;sum(states_nontarget_sort(r,5))]

% End of grouping and sorting section

% END grouping nontarget data

% ------------------------------------------------------------------------

% --------------------------------------------------------------------------

% Begin Error statistics - total

fprintf(1,’\n Total MD: %5.4f for %d Targets \n’,...

1-mean(StatesTargetMid(:,5)), target_length);

fprintf(1,’\n Total FA: %5.4f for %d NonTargets \n’,...

mean(StatesNonTargetMid(:,5)), nontarget_length);

% End Error statistics - total

% -------------------------------------------------------------------------
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% --------------------------------------------------------------------------

% BEGIN 16 state operator error model from available input data.

% Use target Hi - Lo data for 4 Independent variables.

% Create operator model data preliminary matrix =

% [GSD AA Dwell IET #NT #FA Pfa2 #T #Hits Pmd2]

%OpModelDataP(:,1)=[min(states_target_sort(:,1))*ones(8,1);...

% max(states_target_sort(:,1))*ones(8,1)];

OpModelDataP(:,1)=[0.190905*ones(8,1);0.275752*ones(8,1)];

OpModelDataP(:,2)=[45*ones(4,1);90*ones(4,1);45*ones(4,1);90*ones(4,1)];

OpModelDataP(:,3)=[2.240;2.240;4.550;4.550;2.240;2.240;4.550;4.550;...

2.240;2.240;4.550;4.550;2.240;2.240;4.550;4.550];

% OpModelDataP(:,3)=[min(states_target_sort(:,3));min(states_target_sort(:,3));...

% max(states_target_sort(:,3));max(states_target_sort(:,3));...

% min(states_target_sort(:,3));min(states_target_sort(:,3));...

% max(states_target_sort(:,3));max(states_target_sort(:,3));...

% min(states_target_sort(:,3));min(states_target_sort(:,3));...

% max(states_target_sort(:,3));max(states_target_sort(:,3));...

% min(states_target_sort(:,3));min(states_target_sort(:,3));...

% max(states_target_sort(:,3));max(states_target_sort(:,3));...

% ];

OpModelDataP(:,4)=[0;30;0;30;0;30;0;30;0;30;0;30;0;30;0;30];

OpModelDataP(:,5)= NonTargetStateSamples’;

OpModelDataP(:,6)= FalseDetections;

OpModelDataP(:,7)= FalseDetections./NonTargetStateSamples’;
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OpModelDataP(:,8)= TargetStateSamples’;

OpModelDataP(:,9)= DetectionHits;

OpModelDataP(:,10)= ones(16,1) - DetectionHits./TargetStateSamples’;

% This is to fix 1 state that has a zero entry.

%OpModelDataP(8,7) = 0.0125;

OpModelDataPR = [OpModelDataP(:,1:4),OpModelDataP(:,7),OpModelDataP(:,10)];

%xlswrite(’OpModelDataF86’,OpModelDataPR);

%xlswrite(’OpModelDataF88’,OpModelDataPR);

%xlswrite(’OpModelDataF0828’,OpModelDataPR);

%%xlswrite(’OpModelDataF0920’,OpModelDataPR);

% END 16 state operator error model from available input data.

% -----------------------------------------------------------------------

%-------------------------------------------------------------------

% BEGIN interpolation of operator error model from 16 states to 256 states.

% This gives the grid form for the 16 states.

[GSD16,AA16,Dwell16,IET16]=ndgrid(OpModelDataP(1,1):OpModelDataP(16,1)...

-OpModelDataP(1,1):OpModelDataP(16,1),45:45:90,...

OpModelDataP(1,3):OpModelDataP(16,3)...

-OpModelDataP(1,3):OpModelDataP(16,3),0:30:30);

% This gives the value of the table (Pfa16) in grid form.

Pfa16(:,:,1,1)=[OpModelDataP(1,7),OpModelDataP(5,7);...

OpModelDataP(9,7),OpModelDataP(13,7)];
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Pfa16(:,:,2,1)=[OpModelDataP(3,7),OpModelDataP(7,7);...

OpModelDataP(11,7),OpModelDataP(15,7)];

Pfa16(:,:,1,2)=[OpModelDataP(2,7),OpModelDataP(6,7);...

OpModelDataP(10,7),OpModelDataP(14,7)];

Pfa16(:,:,2,2)=[OpModelDataP(4,7),OpModelDataP(8,7);...

OpModelDataP(12,7),OpModelDataP(16,7)];

% This gives the value of the table (Pmd16) in grid form.

Pmd16(:,:,1,1)=[OpModelDataP(1,10),OpModelDataP(5,10);...

OpModelDataP(9,10),OpModelDataP(13,10)];

Pmd16(:,:,2,1)=[OpModelDataP(3,10),OpModelDataP(7,10);...

OpModelDataP(11,10),OpModelDataP(15,10)];

Pmd16(:,:,1,2)=[OpModelDataP(2,10),OpModelDataP(6,10);...

OpModelDataP(10,10),OpModelDataP(14,10)];

Pmd16(:,:,2,2)=[OpModelDataP(4,10),OpModelDataP(8,10);...

OpModelDataP(12,10),OpModelDataP(16,10)];

% This gives the grid form for the 256 interpolated states.

[GSD256,AA256,Dwell256,IET256]=ndgrid(OpModelDataP(1,1):(OpModelDataP(16,1)...

-OpModelDataP(1,1))/3:OpModelDataP(16,1),45:15:90,...

OpModelDataP(1,3):(OpModelDataP(16,3)-OpModelDataP(1,3))...

/3:OpModelDataP(16,3),0:10:30);

% This gives the value of the table Pfa256 and Pmd256 in grid form.

Pfa256=interpn(GSD16,AA16,Dwell16,IET16,Pfa16,GSD256,AA256,Dwell256,IET256);

Pmd256=interpn(GSD16,AA16,Dwell16,IET16,Pmd16,GSD256,AA256,Dwell256,IET256);
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% This section converts the grid model into op model xml file form of

% increasing frequency of variations from right to left.

OpModelDataP256 = 99*ones(256,6);

m=1;

for i=1:4

for j=1:4

for k=1:4

for l=1:4

OpModelDataP256(m,:)=[GSD256(i,j,k,l),AA256(i,j,k,l),...

Dwell256(i,j,k,l),IET256(i,j,k,l),Pfa256(i,j,k,l),Pmd256(i,j,k,l)];

m=m+1;

end

end

end

end

% End interpolation of operator error model from 16 states to 256 states.

%----------------------------------------------------------------

%----------------------------------------------------------------

% BEGIN xml

% This line saves the 256 state model as an excel file.

% The numbers on end mean that the op data used to make the end on M,D.

%xlswrite(’OpModelData256F0828’,OpModelDataP256);
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%%xlswrite(’OpModelData256F0920’,OpModelDataP256);

% This line saves the same data as an xml file for use in VSCS.

%modelPrinter(OpModelDataP256,’OpModelData256F0828.xml’);

%%modelPrinter(OpModelDataP256,’OpModelData256F0920.xml’);

% END xml

% ------------------------------------------------------------------

% END operator model m file

% ---------------------------------------------------------------------------
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Appendix H: Connection with Communications & Information Theory

H.1 Derivation of Information Gain

The inspected objects are X = [T, FT ], where the true classification is either Target

(T) or False Target (FT). The un-assisted operator, or the SC-assisted operator, declares the

inspected object to be a Target or False Target, Y = [To, FTo]. The inspection operation is

modeled as an asymmetric binary communication channel, as shown in Figure H.1.

The prior information or density is p, PMD = 1 − PTR, and PFA = 1 − PFTR.

T

FT

To

FTo

Ptr

Pftr

Pfa Pmd

X YOperator or SC

p

1-p

Figure H.1: Binary Communications Channel

Definitions

The Mutual Information between the events x ∈ X and y ∈ Y is the information provided

about the event x by the occurrence of the event y:

IX;Y(x; y) ∆
= log2

P(x|y)
P(x)

[bits]

The Average Mutual Information is:

I(X; Y) ∆
=

∑
x

∑
y

P(x, y) log2
P(x|y)
P(x)

[bits]
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The performance of the operator and/or the SC may be gauged by calculating the infor-

mation (in bits) provided by them, given the Target density data p and their performance

parameters PTR and PFTR. To this end, consider the binary channel shown in Figure H.1

and calculate:

1. The joint probabilities

P(T,To) = pPTR, P(FT, FTo) = (1 − p)PFTR

P(T, FTo) = pPMD, P(FT,To) = (1 − p)PFA

2. The probabilities of the events

P(To) = pPTR + (1 − p)PFA, P(FTo) = (1 − p)PFTR + pPMD

3. Therefore, the conditional probabilities

P(T |To) =
pPTR

pPTR + (1 − p)PFA
, P(FT |FTo) =

(1 − p)PFTR

(1 − p)PFTR + pPMD

P(T |FTo) =
pPMD

(1 − p)PFTR + pPMD
, P(FT |To) =

(1 − p)PFA

pPTR + (1 − p)PFA

4. The mutual information

I(T ; To) = log2
PTR

pPTR + (1 − p)PFA

I(FT ; FTo) = log2
PFTR

(1 − p)PFTR + pPMD

I(T ; FTo) = log2
PMD

(1 − p)PFTR + pPMD

I(FT ; To) = log2
PFA

pPTR + (1 − p)PFA

5. Average mutual information

I(X; Y) = P(T,To) · I(T ; To) + P(FT, FTo) · I(FT ; FTo)

+ P(T, FTo) · I(T ; FTo) + P(FT,To) · I(FT ; To)
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Hence,

I(X; Y) = pPTR log2
PTR

pPTR + (1 − p)PFA
+ (1 − p)PFTR log2

PFTR

(1 − p)PFTR + pPMD

+ pPMD log2
PMD

(1 − p)PFTR + pPMD
+ (1 − p)PFA log2

PFA

pPTR + (1 − p)PFA
(H.1)

Using the mutual information concept to gauge the operator’s or SC’s performance allows

us to bring into the picture the target density parameter p, as opposed to the PC ∆
=

(PTR + PFTR)/2 performance metric where p plays no role.

Concerning [H.1]:

The expected/average information gain I(X; Y) is a convex function of PTR and PFTR for a

fixed “target density” p.

It is interesting to ascertain the channel’s parameters P∗TR and P∗FTR where the expected

information gain function I(X; Y) attains its minimum for a fixed “target density” p. To this

end, differentiate [H.1] in PTR and PFTR and set the derivatives to 0, thus obtaining P∗TR and

P∗FTR.

For example, when p = 1/2 consider [H.2].

If p = 1/2, the average information gain is

I(X; Y) = 1 +
1
2

[PTR log2 PTR + PFTR log2 PFTR + PMD log2 PMD + PFA log2 PFA

− (PTR + PFA) log2(PTR + PFA) − (PFTR + PMD) log2(PFTR + PMD)] [bits](H.2)

Differentiating in PTR yields

log PTR + 1 − log(1 − PTR) − 1 = 0
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and differentiating in PFTR yields

log PFTR + 1 − log(1 − PFTR) − 1 = 0

=> log
PTR

1 − PTR
= 0, log

PFTR

1 − PFTR
= 0

=> P∗TR = 1/2, P∗FTR = 1/2

and we calculate the expected information gain when this channel is used

I(X; Y) = 0.

Proposition For a given “target density” p, the expected information gain is minimal when

the channel’s parameters are P∗TR = p, P∗FTR = 1 − p (and consequently, P∗MD = 1 − p,

P∗FA = p)—The expected information gain I(X; Y) = 0.

Proof Always I(X; Y) ≥ 0. We calculate

I(X; Y) = p2 log
p

p2 + (1 − p)p
+ (1 − p)2 log

1 − p
(1 − p)2 + (1 − p)p

+ (1 − p)p log
1 − p

(1 − p)2 + (1 − p)p
+ (1 − p)p log

p
p2 + (1 − p)p

= p2 log 1 + (1 − p)2 log 1 + p(1 − p) log 1 + (1 − p)p log 1

= 0

�

Note: If the operator knows the target density p and he pursues a strategy of flipping a

loaded coin, then the expected information gain provided by this operator is 0!

From [H.1] it also follows that if PTR = PFTR = 1/2, I(X; Y) = 0 ∀p. Thus, the

channel’s capacity is C = 0! Thus, if the operator pursues a strategy of flipping a fair coin,

then the operator conveys no information about the inspected object.
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H.2 Justification of the Average Mutual Information Criterion

The entropy1 H(X) of a discrete random variable X is

H(X) ∆
= −

∑
x

p(x) log2(p(x))

This is the average information gain when told the outcome realization of the random vari-

able X.

Thus, for X = [T, FT ]

H(X) = −p log2 p − (1 − p) log2(1 − p)

∆
= H(p)

The entropy quantifies our lack of information about the random variable X.

It is in fact the information required to specify x. See Figure H.2.

The conditional entropy

H(X|Y) = −
∑

x

∑
y

P(x, y) log P(x|y)

This is the average information (the average is taken over x and y) required to specify x

after y is known.

In our case, X = [T, FT ], Y = [To, FTo] and the conditional entropy

H(X|Y) = −P(T,To) log2 P(T |To) − P(T, FTo) log2 P(T |FTo)

− P(FT,To) log2 P(FT |To) − P(FT, FTo) log2 P(FT |FTo)

1Entropy: Assume that you know the pdf but you don’t know the result of a draw; however, someone else
does. The minimal number of yes/no questions on average you’ll need to ask him to find out the result of the
draw is ≤ H(X) + 1
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Figure H.2: Entropy as function of density

We then calculate

H(X|Y) = −pPTR log2
pPTR

pPTR + (1 − p)PFA
− (1 − p)PFTR log2

(1 − p)PFTR

(1 − p)PFTR + pPMD

− pPMD log2
pPMD

(1 − p)PFTR + pPMD
− (1 − p)PFA log2

(1 − p)PFA

pPTR + (1 − p)PFA

= −pPTR log2 p − (1 − p)PFTR log2(1 − p) − pPMD log2 p − (1 − p)PFA log2(1 − p) − I(X; Y)

= −p log2 p − (1 − p) log2(1 − p) − I(X; Y)

= H(X) − I(X; Y)

Hence,

I(X; Y)a = H(X)b − H(X|Y)c (H.3)
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a: Average information gain due to the knowledge of y.

b: The information required to specify x.

c: The information required to specify x after y is known.

Thus, the average mutual information between x and y is the difference between the

entropy of X and the average conditional entropy of X given Y . I(X; Y) is the average

amount of uncertainty in X resolved by the observation of the outcome in the Y ensemble:

The mutual information is the reduction in uncertainty of X due to the knowledge of Y .

The equation [H.3] always holds, not just in the present scenario.

Concerning the average mutual information in the special case where the target density

p = 1/2, namely equation [H.1]:

I(X; Y) = 1 +
1
2

[H(Y) − H(X,Y)]

where the entropy

H(X,Y) = −
∑

x

∑
y

p(x, y) log p(x|y)

and due to the chain rule of information theory

I(X; Y) = 1 −
1
2

H(X|Y) (< 1, always) (H.4)

where the conditional entropy

H(X|Y) = −
∑

x

∑
y

p(x, y) log2
p(y)

p(x, y)
.

Bottom Line

To evaluate the benefit afforded by the SC,

1. Evaluate the average mutual information according to equation [H.1], using the PTR and

PFTR parameters of the operator, and the target density p (= 1/2). We obtain I(X; Y)o.

2. Evaluate the average mutual information according to equation [H.1], using the PTR and

PFTR parameters of the SC, and the target density p (= 1/2). We obtain I(X; Y)S C.

3. Calculate

∆I(X; Y) ∆
= I(X; Y)S C − I(X; Y)o [bits]
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This is a replacement for the PC metric and also takes into account the target density p.

Can also project ahead to account for different target densities, assuming that the operator’s

performance (PTR and PFTR) is not affected by the “knowledge” of p.

H.3 Correct Definition of PC

Here, X = [T, FT ].

The Percent Correct (PC) is the probability of a correct transmission of a T or FT symbol

being sent through the binary communication channel shown in Figure 1. We calculate

PC = pPTR + (1 − p)PFTR

By the same token, sending one symbol through the channel has a Probability of Error (PE)

of

PE = pPMD + (1 − p)PFA

Since PMD = 1 − PTR and PFA = 1 − PFTR, then PC + PE = 1, as expected.

Remark If p = 1/2 then indeed PC = (PTR + PFTR)/2.

In general, see Figure H.3

The PC (and PE) performance metric allows us to calculate the probability P of correctly

classifying m objects when n ≥ m objects are being inspected. The number of correctly

classified objects is a Bernoulli random variable and consequently

P =

(
n
m

)
(PC)m(PE)n−m

Note If 0 < p � 1 and, knowing this, the operator blindly adopts the strategy of classifying

everything as a FT, that is, PTR = 0, and PFTR = 1, then PC = 1 − p ≈ 1 and PE = p ≈ 0.

This creates an illusion of good performance. However, the information gain I(X; Y) = 0!

This tells us that information gain might be a better performance metric.

As an example, take a p = 0.05 target density case where PC = pPTR + (1 − p)PFTR:

Op: FA=1%, MD=70%, PCavg=65%, whereas PC = 0.05 ∗ 0.3 + 0.95 ∗ 0.99 = 95%
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Figure H.3: PC as a function of p

SC: FA=0%, MD=20%, PCavg=90%, whereas PC = 0.05 ∗ 0.8 + 0.95 ∗ 1.0 = 99%

However, the I(X; Y) ≡ Expected Information Gain performance metric:

Op : I(X; Y) = 0.05 ∗ 0.3 log2
0.3

0.05 ∗ 0.3 + 0.95 ∗ 0.01
+ 0.95 ∗ 0.99 log2

0.99
0.95 ∗ 0.99 + 0.05 ∗ 0.7

+ 0.05 ∗ 0.7 log2
0.7

0.95 ∗ 0.99 + 0.05 ∗ 0.7
+ 0.95 ∗ 0.01 log2

0.01
0.05 ∗ 0.3 + 0.95 ∗ 0.01

= 0.0451928 [bits]

S C : I(X; Y) = 0.05 ∗ 0.8 log2
0.8

0.05 ∗ 0.8 + 0.95 ∗ 0.0
+ 0.95 ∗ 1.0 log2

1.0
0.95 ∗ 1.0 + 0.05 ∗ 0.2

+ 0.05 ∗ 0.2 log2
0.2

0.95 ∗ 1.0 + 0.05 ∗ 0.2
+ 0.95 ∗ 0.0 log2

0.0
0.05 ∗ 0.8 + 0.95 ∗ 0.0

= 0.206196 [bits]

This needs to be compared to the channel’s capacity, COp and CS C.

Note: When the operator adopts the strategy of declaring all inspected objects FT (PFTR = 1

and PTR = 0), then I(X; Y) = 0. If the operator uses a p loaded coin, then I(X; Y) = 0 also.
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H.4 The Capacity of the Communication Channel Metric

C ∆
= max

p
I(X; Y) [bits]

It is convenient to write

I(X; Y) = −pPTR log(p +
PFA

PTR
(1 − p)) + (1 − p)PFTR log(

PMD

PFTR
p + 1 − p)

− pPMD log(p +
PFTR

PMD
(1 − p)) + (p − 1)PFA log(1 − p +

PMD

PFTR
p)

Differentiate in p:

−PTR log(p +
PFA

PTR
(1 − p)) − pPTR

1 − PFA
PTR

p + PFA
PTR

(1 − p)

+PFTR log(1 − p +
PMD

PFTR
p) + (1 − p)PFTR

PMD
PFTR
− 1

1 − p + PMD
PFTR

p

−PMD log(p +
PFTR

PMD
(1 − p)) − pPMD

1 − PFTR
PMD

p + PFTR
PMD

(1 − p)

+PFA log(1 − p +
PTR

PFA
p) + (p − 1)PFA

PTR
PFA
− 1

1 − p + PTR
PFA

p
= 0

=>

−pPTR
1

PFA
PTR−PFA

+ p
+ (p − 1)PFTR

1
PFTR

PMD−PFTR
+ p

−pPMD
1

PFTR
PMD−PFTR

+ p
+ (p − 1)PFA

1
PFA

PTR−PFA
+ p

+ log
(1 − p + PMD

PFTR
p)PFTR(1 − p + PTR

PFA
p)PFA

[p + PFA
PTR

(1 − p)]PTR[p + PFTR
PMD

(1 − p)]PMD
= 0

=>

(PFA − PTR)p − PFA
PFA

PTR−PFA
+ p

+
(PFTR − PMD)p − PFTR

PFTR
PMD−PFTR

+ p

+ log
(1 − p + PMD

PFTR
p)PFTR(1 − p + PTR

PFA
p)PFA

[p + PFA
PTR

(1 − p)]PTR[p + PFTR
PMD

(1 − p)]PMD
= 0
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=>

(1 − p +
PMD

PFTR
p)PFTR(1 − p +

PTR

PFA
p)PFA = [p +

PFA

PTR
(1 − p)]PTR[p +

PFTR

PMD
(1 − p)]PMD

=>

[1+(
1 − PTR

PFTR
−1)p]PFTR[1+(

PTR

PFA
−1)p]PFA = [

PFA

PTR
+(1−

PFA

PTR
)p]PTR[

PFTR

PMD
+(1−

PFTR

PMD
)p]PMD

=>

[1+(
1 − PTR

PFTR
−1)p]PFTR[1+(1+

PTR

PFTR
−1)p]1−PFTR = [

1 − PFTR

PTR
+(1−

1 − PFTR

PTR
)p]PTR[

PFTR

1 − PTR
+(1−

PFTR

1 − PTR
)p]1−PTR

(H.5)

Must solve above equation in p.

Example: Symmetric Binary Channel: PFTR = PTR

Equation H.5 is now[
1 + (

1
PTR
− 2)p

]PTR
[
1 + (

PTR

1 − PTR
− 1)p

]1−PTR

=

[
1

PTR
− 1 + (2 −

1
PTR

)p
]PTR

[
PTR

1 − PTR
+ (1 −

PTR

1 − PTR
)p

]1−PTR

=>

[
PTR + (1 − 2PTR)p

1 − PTR + (2PTR − 1)p

]PTR

=

[
PTR + (1 − 2PTR)p

1 − PTR + (2PTR − 1)p

]1−PTR

=>

1 =
PTR + (1 − 2PTR)p

1 − PTR + (2PTR − 1)p

=>

[
1 − PTR + (2PTR − 1)p
1 − PTR + (2PTR − 1)p

∗
PTR + (1 − 2PTR)p
PTR + (1 − 2PTR)p

]PTR

=
PTR + (1 − 2PTR)p

1 − PTR + (2PTR − 1)p
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=>

1 − PTR + (2PTR − 1)p = PTR + (1 − 2PTR)p

=>

2(1 − 2PTR)p = 1 − 2PTR

Hence, when PFTR = PTR, p∗ = 1/2 and

C∗ = 1 + PTR log2 PTR + (1 − PTR) log2(1 − PTR) < 1 [bits]

provided that PTR , 1/2. If PTR = PFTR = 1/2, I(X; Y) = 0 ∀p so that C = 0.

Concerning equation H.5:

The Average Mutual Information function is concave in p. Therefore, setting its derivative

equal to zero yields yields p∗ and the Capacity of the communications channel is easily

calculated.

Equation H.5 is manipulated as follows.

[
PFTR + (1 − PTR − PFTR)p

1 − PFTR − (1 − PTR − PFTR)p
∗

1 − PFTR

PFTR
]PFTR

∗
1 − PFTR − (1 − PTR − PFTR)p

PFTR + (1 − PTR − PFTR)p
∗

1 − PTR

1 − PFTR

= [
1 − PFTR − (1 − PTR − PFTR)p

PFTR + (1 − PTR − PFTR)p
∗

1 − PTR

PTR
]PTR

Let x ∆
= (1 − PTR − PFTR)p

Thus,

(
PFTR + x

1 − PFTR − x
)PFTR(

1 − PFTR

PFTR
)PFTR ∗

1 − PFTR − x
PFTR + x

∗
1 − PTR

1 − PFTR

= (
1 − PFTR − x

PFTR + x
)PTR(

1 − PTR

PFTR
)PTR
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=>

(
PFTR + x

1 − PFTR − x
)PTR+PFTR−1 =

PPFTR
FTR

PPTR
TR

∗
(1 − PFTR)1−PFTR

(1 − PTR)1−PTR

Redefine x ∆
= (1 − PTR − PFTR)p + PFTR

=>

x
1 − x

=

PPFTR
FTR

PPTR
TR

∗
(1 − PFTR)1−PFTR

(1 − PTR)1−PTR

 1
PTR+PFTR−1

=>

1 − x
x

=

PPFTR
FTR

PPTR
TR

∗
(1 − PFTR)1−PFTR

(1 − PTR)1−PTR

 1
1−PTR−PFTR

=>

x =
1

1 +

[
PPFTR

FTR

PPTR
TR

∗
(1−PFTR)1−PFTR

(1−PTR)1−PTR

] 1
1−PTR−PFTR

=>

p∗ =
1

1 − PTR − PFTR
∗


1

1 +

[
PPFTR

FTR

PPTR
TR

∗
(1−PFTR)1−PFTR

(1−PTR)1−PTR

] 1
1−PTR−PFTR

− PFTR

 (H.6)

Inserting the expression for p∗ by equation [H.6] into equation [5.19] yields the

“communication’s channel” capacity C = C(PTR, PFTR).

Corollary In the special case of a symmetric binary channel where PTR = PFTR, p∗ = 1/2

and the capacity of the channel is

C = 1 + PTR log2 PTR + (1 − PTR) log2(1 − PTR) < 1 [bits],

provided that PTR , 1/2. If PTR = PFTR = 1/2, I(X; Y) = 0 ∀ p so that C = 0.

�
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Data for density p = 0.5

Op: PFA = 0.35, PMD = 0.17

SC: PFA = 0.05, PMD = 0.05.

Note: PTR = PFTR => p∗ = 1/2

=> C∗ = 1 + 0.95 log2 0.95 + 0.05 log2 0.05 [bits].

For p = 0.05

Op: PFA = 0.0, PMD = 0.5

Note: On a second visit, which is always under optimal conditions, the operator’s

P(2)
MD ≈ 0, P(2)

FA ≈ 0.

Remark: The formula for p∗, which yields the channel’s capacity, can also be written as

p∗ =
1

1 − PMD − PFA
∗

1 − PFA −
1

1 +

[
PPTR

FA

PPFTR
FTR

∗
PPMD

MD

PPFA
FA

] 1
1−PMD−PFA


Note: When PMD = 0 and PFA = 0, p∗ = 1/2 and then C∗ = 1 as expected.

In general, given the operator or SC data PTR and PFTR, can calculate p∗ and thus

can calculate the channel’s capacity C; we here contend that the operator or SC act

as a communication channel. We have modeled the operator and/or SC as a binary

communication channel so that the natural performance metric is its capacity

C = max
p

I(X; Y) [bits]

Thus, C = C(PTR, PFTR) and is no longer dependent on the prior information/target

density parameter p. Hence, calculate C(PTROp , PFTROp) and C(PTRS C , PFTRS C ) and show

C(PTRS C , PFTRS C ) > C(PTROp , PFTROp).

The capacity of a communication channel C, is the maximum rate of errorless

information transmission over the channel. Here “rate” means number of bits/symbols

(T or FT) per transmission. Since we want to correctly transmit/classify one bit, where a
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bit stands for a T or FT, our channel whose capacity C < 1 [bit] is not up to the task. In

order to use such a channel whose capacity C < 1 [bit], it is standard practice in the field of

communications to send the same bit repeatedly through the channel, that is, in our case,

re-inspect the object. One then makes a determination according to a voting scheme where

the majority prevails. It is of course assumed that the operator’s parameters PTR and PFTR

are stationary—not so in our case—and, most importantly, the operator’s determinations

are statistically independent.

How many times n would one need to retransmit the one bit of information: n = 1/C

and the data rate is 1/n (= C).

Obviously, n needs to be an odd number in order to be able to employ a voting scheme.

The probability of error is then

P((n + 1)/2 or greater incorrect classifications ) =
∑

j=(n+1)/2

(
n
j

)
(PE) j(PC)n− j

We have not used a voting scheme and majority rule. Instead, a probability threshold Pt

was used for classification and n = 2. The probability P2 that the object is a T after the

outcome of two inspections has become available is calculated as in the Kalman filtering

paradigm.

First and foremost, n = 2 is adequate if

C(PTROp , PFTROp) ≥ 0.5 bits or C(PTRS C , PFTRS C ) ≈ 1 bit

H.5 The Probability of Error when a Probability Threshold Pt is used

Two inspections: n = 2. For example, Pt = 0.5.

After two inspections, the operator’s output is (To,To), or (To, FTo), or (FTo,To), or (FTo, FTo).

Given the operator’s output, the probability P2(T |·, ·) that the inspected object is a T is

calculated—see equations (5.7, 5.8) where a discrete Kalman filtering recursive algorithm

is used to calculate P1(T |·):

We have the following result.
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Theorem

P(T |To) =
pPTR

pPTR + (1 − p)(1 − PFTR)

P(FT |To) =
(1 − p)(1 − PFTR)

pPTR + (1 − p)(1 − PFTR)

P(FT |FTo) =
(1 − p)PFTR

p(1 − PTR) + (1 − p)PFTR

P(T |FTo) =
p(1 − PTR)

p(1 − PTR) + (1 − p)PFTR

�

There are two failure modes:

1. The probability of error is the probability that after two inspections of an object which

is in fact a target T, the calculated probability that the object is a T,

P2(T |·, ·) < Pt, so the object is erroneously classified a FT

or,

2. The probability of error is the probability that after two inspections of an object which

is in fact a FT, the calculated probability that the object is a T,

P2(T |·, ·) > Pt, so the object is erroneously classified a T.

The calculated probability after two inspections P2(T |·, ·) is a function of the 4 possible

determinations: (To,To), (To, FTo), (FTo,To), or (FTo, FTo).

Suppose, for example, the problem parameters p, P(1)
TR, P(1)

FTR, P(2)
TR, P(2)

FTR are s.t.

Assume 1:

P2(T |To,To) > Pt, P2(T |To, FTo) < Pt, P2(T |FTo,To) > Pt, and P2(T |FTo, FTo) < Pt. (In

other words, the results of the second inspection are more believable.)

An error of the first kind will occur if the inspected object is a T and the operator said

(To, FTo) or the operator said (FTo, FTo). Now, the probability that the operator will say

(To, FTo) when the object is indeed a T, is
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Po(To, FTo) = P(1)
TR · P

(2)
MD

and the probability that the operator will say (FTo, FTo) when the object is in fact a T is:

Po(FTo, FTo) = P(1)
MD · P

(2)
MD

and so the probability of error in the first failure mode is

PE1 = P(1)
TR · P

(2)
MD + P(1)

MD · P
(2)
MD = P(2)

MD

Failure mode 2 arises when the inspected object is a FT and the calculated probability

P2(T |·, ·) > Pt.

Assume 2:

P2(FT |FTo, FTo) < Pt, P2(FT |To, FTo) < Pt, P2(FT |FTo,To) > Pt, and P2(FT |FTo, FTo) >

Pt. (Again, we assume the results of the second inspection are more believable.)

According to these assumptions, a mode 2 failure will occur when the operator says (FTo,To)

or (To,To) when in fact the inspected object is a FT.

The probability that the operator will say (FTo,To) when in fact the inspected object is a

FT is

Po(FTo,To) = P(1)
FTR · P

(2)
FA,

and the probability that the operator will say (To,To) when the object is a FT is

Po(To,To) = P(1)
FA · P

(2)
FA,

Hence, the probability of error in case 2 is

PE2 = P(1)
FTR · P

(2)
FA + P(1)

FA · P
(2)
FA = P(2)

FA

Hence, the probability of error in our two inspection scheme is

PE = pPE1 + (1 − p)PE2 = pP(2)
MD + (1 − p)P(2)

FA

Thus,

PE = pP(2)
MD + (1 − p)P(2)

FA.

The second inspection is crucial. The results of the first inspection are immaterial. This

is because the “state” for the second time around is considerably better. Thus, the va-

lidity of the final formula above for PE rests on Assumptions 1&2. If, for example,

141
Approved for public release; distribution unlimited.



P(2)
MD ≈ 0, P(2)

FA => PE ≈ 0.

Consider the symmetric binary channel where P(1)
TR = P(2)

TR = 1 − ε, P(1)
FTR = P(2)

FTR = 1 − ε.

We calculate

P1(T |To) =
p(1 − ε)

p + ε − 2pε

P1(FT |To) =
(1 − p)ε

p + ε − 2pε

P1(FT |FTo) =
(1 − p)(1 − ε)

1 + 2pε − p − ε

P1(T |FTo) =
pε

1 + 2pε − p − ε

=> In the case where n = 2,

P2(T |To,To) =
p(1 − ε)2

p − 2pε + ε2 , P2(T |FTo,To) = p, P2(T |FTo,To) = p ∀ε

P2(T |FTo, FTo) =
pε2

1 − p + 2pε + ε2ε

Note If 0 ≤ ε < 1/2,

P2(T |To,To) > p and P2(T |FTo, FTo) < p

Set the probability threshold Pt > p s.t. P2(T |To,To) > Pt.

Thus, the situation is 0 < P2(T |FTo, FTo) < p < Pt < P2(T |To,To) < 1.

There are two failure modes: The probability of error PE is

1. The probability that after two inspections of an object which in fact a T, the calculated

probability that the object is a T

P2(T |·, ·) < Pt

so that T is misclassified a FT,

or,

2. The probability that after two inspections of an object which is in fact a FT, the calcu-

lated probability
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P2(T |·, ·) > Pt

so that FT is misclassified a T.

Failure mode 1 can arise when the operator said

a) (To, FTo). The probability of this happening is P(1)
TR · P

(2)
MD = (1 − ε)ε

b) (FTo,To). The probability of this happening is P(1)
MD · P

(2)
TR = ε(1 − ε)

c) (FTo, FTo). The probability of this happening is P(1)
MD · P

(2)
MD = ε · ε

Hence,

PE1 = 2ε(1 − ε) + ε2 = 2ε − ε2

Failure mode 2 can only arise when the operator said (To,To). The probability of this

happening is P(1)
FA · P

(2)
FA = ε · ε

Hence,

PE2 = ε2,

and we calculate the probability of failure

PE = pPE1 + (1 − p)PE2

= p(2ε − ε2) + (1 − p)ε2

=>

PE = 2pε(1 − ε) + ε2

This result holds, provided that the probability threshold Pt satisfies the inequality

p < Pt < P2(T |To,To)

and 0 ≤ ε < 1/2. Thus, need 0 ≤ ε < 1/2 and

p < Pt <
p(1 − ε)2

p − 2pε + ε2
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=>

Need

0 ≤ ε < 1/2

and the following holds.

Proposition Consider the symmetric binary channel where P(1)
TR = P(2)

TR = 1 − ε and

P(1)
FTR = P(2)

FTR = 1 − ε. If 0 ≤ ε < 1/2 and the probability threshold satisfies

p < Pt <
p(1 − ε)2

p − 2pε + ε2

then if n = 2, the probability of error

PE = 2pε(1 − ε) + ε2

�

Example If p = 0.5, need probability threshold 1/2 < Pt < 1/(1 + (ε/(1− ε))2) and PE = ε.

If p = 0.05, and 0.05 < Pt < 1/(1 + 19(ε/(1 − ε))2) and PE = 0.1ε + 0.9ε2.

At the same time, the capacity of the symmetric binary channel where PTR = PFTR = 1− ε,

is

C = 1 + ε log2 ε + (1 − ε) log2(1 − ε) [bits](<1).

If, for example, ε = 0.01 then C = 0.9192069, PC = 1 − ε = 1 − 0.99, and PE = ε = 0.01.

If n = 3 and the majority rule is applied, the probability of error

PE =

n∑
j=(n+1)/2

(
n
j

)
(PE) j(PC)n− j

=

(
3
2

)
ε2(1 − ε) +

(
3
3

)
ε3 = ε2(3 − 2ε)

=

(
3
2

)
∗ 0.012 ∗ 0.99 +

(
3
3

)
∗ 0.01 ∗ 1

= 0.000298

If however n = 2 and the voting rule is s.t. a T is accepted iff the operator says (To,To),

otherwise the object is classified a FT, then a classification error will occur if:
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1. The object is a T and the operator said (To, FTo) or (FTo,To), or (FTo, FTo). The

probability of this occurring is PE1 = (1 − ε)ε + ε(1 − ε) + ε2.

2. The object is a FT and the operator said (To,To). The probability of this occurring is

PE2 = ε2.

Hence,

PE = pPE1 + (1 − p)PE2

= p[2ε(1 − ε) + ε2] + (1 − p)ε2

PE = 2pε(1 − ε) + ε2

as before, when a probability threshold Pt was used.

Consider now the case n = 3 and the use of a discrete KF algorithm and probability

threshold Pt. We calculate

P3(T |To,To,To) =
p(1−∈)3

p(1−3∈+3∈2)−∈3 , P3(T |To,To, FTo) =
p(1−∈)

p−2p∈+∈

P3(T |To, FTo,To) =
p(1−∈)

p−2p∈+∈ , P3(T |To, FTo, FTo) =
p∈

1−p−∈+2p∈

P3(T |FTo,To,To) =
p(1−∈)

p−2p∈+∈ , P3(T |FTo,To, FTo) =
p∈

1−p−∈+2p∈

P3(T |FTo, FTo,To) =
p∈

1−p−∈+2p∈ , P3(T |FTo, FTo, FTo) =
p∈3

(1−∈)3+p(2∈3−3∈2+3∈−1)

Assume 0 < ε < 1/2 and set Pt =
p(1−ε)

p−2pε+ε

Because

P3(T |To,To,To) > P3(T |To,To, FTo) = P3(T |To, FTo,To) = P3(T |FTo,To,To)

> P3(T |To, FTo, FTo) = P3(T |FTo,To, FTo) = P3(T |FTo, FTo,To)

> P3(T |FTo, FTo, FTo)

Set the probability threshold

P3(T |To, FTo, FTo) < Pt < P3(T |To,To, FTo).

1. An error will occur if the inspected object is a T and the operator said (FTo, FTo, FTo),
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or (To, FTo, FTo), (FTo,To, FTo), or (FTo, FTo,To), whereupon the object will be

misclassified a FT.

2. An error will occur if the inspected object is a FT and the operator said (To,To,To),

(To,To, FTo), or (To, FTo,To), or (FTo,To,To), whereupon the object will be misclassified

a T.

The probability of 1. occurring is

PE1 = ε3 + 3(1 − ε)ε2 = 3ε2 − 2ε3

The probability of 2. occurring is

PE2 = ε3 + 3(1 − ε)ε2 = 3ε2 − 2ε3

=> The probability of error

PE = pPE1 + (1 − p)PE2

PE = p(3ε2 − 2ε) + (1 − p)(3ε2 − 2ε)

=> The probability of error

PE = ε2(3 − 2ε)

as before, when the majority rule was used.

The Point:

• Using the probability threshold as opposed to the majority rule allows one to have an

even number n of inspections,

• Using the probability threshold as opposed to the majority rule allows us to consider the

case where P(1)
TR , P(2)

TR , P(3)
TR, and P(1)

FTR , P(2)
FTR , P(3)

FTR.

If 0 ≤ ε < 1/2, then

P3(T |To,To,To) > P3(T |To,To, FTo) = P3(T |To, FTo,To) = P3(T |FTo,To,To) > p

P3(T |FTo,To,To) > P3(T |FTo, FTo,To) = P3(T |To, FTo, FTo) = P3(T |FTo,To, FTo) < p

In addition,

P3(T |FTo, FTo, FTo) < P3(T |FTo, FTo,To) (< p)

let the probability threshold be set at Pt = p.
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The probability of error is calculated as follows:

1. The object is a T and the “operator” said (FTo, FTo,To), or (To, FTo, FTo), or

(FTo,To, FTo), or (FTo, FTo, FTo).

2. The object is a FT and the “operator” said (To,To, FTo), or (To, FTo,To), or (FTo,To,To),

or (To,To,To).

PE1 = 3ε2(1 − ε) + ε3

PE2 = 3ε2(1 − ε) + ε3

=>

PE = pPE1 + (1 − p)PE2

=>

PE = 3ε2(1 − ε) + ε3 = ε2(3 − 2ε)

When the majority rule is used,

PE = ε2(3 − 2ε).

Same result.

In general, we calculate

P(T |To,To)) =

pP(1)
TR

pP(1)
TR+(1−p)(1−P(1)

FTR)
∗ P(2)

TR

pP(1)
TR

pP(1)
TR+(1−p)(1−P(1)

FTR)
∗ P(2)

TR + (1 − P(2)
FTR)(1 − pP(1)

TR

pP(1)
TR+(1−p)(1−P(1)

FTR)
)

=>

P(T |To,To)) =
pP(1)

TRP(2)
TR

pP(1)
TRP(2)

TR + (1 − p)(1 − P(1)
FTR)(1 − P(2)

FTR)

P(T |FTo, FTo)) =
p(1 − P(1)

TR)(1 − P(2)
TR)

p(1 − P(1)
TR)(1 − P(2)

TR) + (1 − p)P(1)
FTRP(2)

FTR

P(T |FTo,To)) =
p(1 − P(1)

TR)P(2)
TR

p(1 − P(1)
TR)P(2)

TR + (1 − p)P(1)
FTR(1 − P(2)

FTR)

P(T |To, FTo)) =
pP(1)

TR(1 − P(2)
TR)

pP(1)
TR(1 − P(2)

TR) + (1 − p)(1 − P(1)
FTR)P(2)

FTR
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Now

P(T |FTo, FTo) < P(T |FTo,To) < P(T |To,To)

and

P(T |FTo, FTo) < P(T |To, FTo) < P(T |To,To).

Question: Is P(T |To, FTo) < P(T |FTo,To), or, is P(T |To, FTo) > P(T |FTo,To)?

We’ll assume

P(T |To, FTo) < P(T |FTo,To)

(≡ the second look is a better look).

Hence,

P(T |FTo, FTo) < P(T |To, FTo) < P(T |FTo,To) < P(T |To,To)

Where does one fit in the probability threshold Pt?

But first, where does the target density p fit in?

The following holds:

P(T |FTo, FTo) < p i f f (1 − P(1)
TR)(1 − P(2)

TR) < P(1)
FTRP(2)

FTR

P(T |To,To) > p i f f P(1)
TRP(2)

TR > (1 − P(1)
FTR)(1 − P(2)

FTR)
=>

P(T |FTo, FTo) < p i f f P(1)
FA + P(2)

FA + P(1)
MDP(2)

MD < 1 + P(1)
FAP(2)

FA

P(T |To,To) > p i f f P(1)
MD + P(2)

MD + P(1)
FAP(2)

FA < 1 + P(1)
MDP(2)

MD

A reasonable choice is Pt = p, in particular if the problem parameters P(1)
MD, P

(2)
MD, P

(1)
FA, P

(2)
FA

are s.t. P(T |To, FTo) < p < P(T |FTo,To).

Consider now the choice

P(T |FTo, FTo) < P(T |To, FTo) < Pt < P(T |FTo,To) < P(T |To,To).

A classification error will occur if

1. The inspected object is a T but the operator said (FTo, FTo), or the operator said

(To, FTo) and the object will be misclassified as a FT

or,
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2. The inspected object is a FT but the operator said (FTo,To) or the operator said (To,To)

and the object will be misclassified a T.

So

PE1 = P(1)
MDP(2)

MD + P(1)
TRP(2)

MD = P(2)
MD

PE2 = P(1)
FTRP(2)

FA + P(1)
FAP(2)

FA = P(2)
FA

Hence

PE = pPE1 + (1 − p)PE2

=>

PE = pP(2)
MD + (1 − p)P(2)

FA
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Appendix I: CCA Output File

I.1 Output File Format

The result of a run of 4 UAVs viewing 20 objects is a .csv (Excel) file containing a

table of 37 columns and 96 rows. Each row is a report entry. As shown in the first column

below, an entry of type 1 is the 1st look at an object, also known as a Point of Interest (POI).

A type 2 entry is a revisit to a POI. Entry type 3 essentially records when the alert is cued.

Entry type 4 records when the object enters the footprint. This could be used to ensure that

the video is in sync with the data and to compute how long the operator took to respond to

the alert. Column 2 is the simulation time the event took place, which goes from 0 seconds

to about 700 seconds, or a run time of about 12 minutes. Column 3, the vehicle ID, is a 9

digit number. The last digit is [1,2,3,4]; since the file entries are in chronological order, this

allows all the entries corresponding to a particular UAV to be grouped together. Columns

4,5 is the UAV heading and altitude. Column 6 is the POI or object number from 1-20.

If the ID is a 1000 number, then the object is a true target (Y). Column 7-10 is the object

3Dim position and orientation (pose angle). Column 11,12 is the planner commanded UAV

aspect angle and altitude for a type 1 entry, and the SC commanded values for a type 2 entry

(revisit). Columns 13-16 are the actual values achieved. This shows how well the autopilot

is tracking the commanded values. These 4 values constitute the true state that is used to in-

terrogate the operator error model (table). Column 17,18 is the operator error model output

values (Ptr=1-Pmd,Pftr=1-Pfa) at the error model input state (column 13-16). These are

conditional probabilities (P(Op=T|T) and P(Op=NT|NT)). Columns 19,20 are the poste-

rior calculations from Bayes, given the prior (column 22), the conditionals (column 17,18)

and the operator observation (column 25). Column 19 is for 1 observation and column 20

is for 2 operator observations. Column 21 should agree with POI. Columns 23-33 are for

the revisit type 2 data entry. Column 23 tells which revisit [1,2.3] the entry is for. Column
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24 is the number of revisits remaining [3,2,1,0]. Column 26 is the output of the Stochastic

Controller where the decision is made whether not to revisit [0], or if to revisit, at which

state [1-256]. The state is the row number in the operator error model. Columns 27-33

are the commanded and actual revisit states. Only AA and GSD are outputs from the SC.

Columns 34-36 are for the pseudo speed control. While Dwell Time is not commanded

(or controlled) by the SC, the revisit speed is commanded by the planner to be the longest

feasible Dwell Time (slowest speed). The IET is not commanded or controlled. Column

37 is the operator stated confidence level [1-5] in his classification decision (T/NT).

1. Type: [1=first response, 2=revisit response, 3=cue triggered, 4=entered footprint]

2. Time: [0-700] seconds

3. Vehicle ID: [xxxxxxxxx] (last digit 1-4)

4. Vehicle Heading(deg): [0-360] degrees, clockwise from N

5. Vehicle Altitude MSL(ft): [200-300] feet

6. POI ID: [1-20] (1000+ for target)

7. POI Latitude(deg): approximately 33 deg

8. POI Longitude(deg): approximately 44 deg

9. POI Altitude MSL(ft): [100] ft nominal

10. POI Heading(deg): [0-360] degrees, clockwise from N

11. Aspect Angle desired(deg) [45-90] degrees, from nose clockwise:

12. GSD desired(ft): [.2-.3] feet/pixel

13. AA actual(deg): [0-180] deg

14. GSD actual(ft): [.2-.3] feet/pixel

15. Dwell Time actual(sec): [2-5] sec

16. IET actual(sec): [0-120] sec

17. PTR: Probability of Target Report (0-1)

18. PFTR: Probability of False Target Report (0-1)
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19. PT1: Prob of being a Target given report 1 (0-1)

20. PT2: Prob of being a Target given report 2 (0-1)

21. Target Truth: [0=NonTarget, 1=Target],(only shows up on reports 1 and 2)

22. p: the a priori density [.5-.05]

23. Revisit Number: [1,2,3]

24. Revisits Left: [3,2,1,0]

25. Operator Response: [1 = target, 0 = no target]

26. Revisit Decision: [0 = no revisit, >0 indicates desired revisit state]

27. Revisit AA commanded(deg): [90] nominally

28. Revisit GSD commanded(ft): [.19] ft/pixel nominally

29. Revisit Altitude Commanded MSL(ft): [200] nominally

30. Revisit AA actual: [90] deg nominal

31. Revisit GSD actual: [.19] nominal

32. Revisit Dwell Time actual: [4.5] sec nominal

33. Revisit IET actual: [0-100] sec

34. Commanded Dwell Time: [4.5] sec nominal

35. Commanded Speed: [29-60] fps, on revisit 29fps nominal

36. Speed actual: [29-60] fps, on revisit 29fps nominal

37. Operator Confidence Level: [1–5], 1 low, 5 high

This example output file is 20130909 3 2.csv. It was taken on 9 September, 2013.

It was one of 5 runs that were made that day by Operator S for the operator error model. It

is Scenario 3 and it is the 2nd time scenario 3 was run that day.

Due to the size of this 97row by 37col table, it is broken up into 12 pages for

readability. Pages 1-3 contain all the rows for the 1st 10 columns, pages 4-6 the 2nd 10

columns, pages 7-9 the 3rd 10 columns, and pages 10-12 the final 6 columns.
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On page 3 is the summary results for this run. The operator had 2 FA, 2 MD, and no

revisit errors.

The respective columns are:

1. Type: [1=first response, 2=revisit response, 3=cue triggered, 4=entered footprint]; 2.

Time: [0-700] seconds; 3. Vehicle ID: [xxxxxxxxx] (last digit 1-4); 4. Vehicle Head-

ing(deg): [0-360] degrees, clockwise from N; 5. Vehicle Altitude MSL(ft): [200-300] feet;

6. POI ID: [1-20] (1000+ for target); 7. POI Latitude(deg): approximately 33 deg; 8. POI

Longitude(deg): approximately 44 deg; 9. POI Altitude MSL(ft): [100] ft nominal; 10.

POI Heading(deg): [0-360] degrees, clockwise from N

11. Aspect Angle desired(deg) [45-90] degrees, from nose clockwise; 12. GSD de-

sired(ft): [.2-.3] feet/pixel; 13. AA actual(deg): [0-180] deg; 14. GSD actual(ft): [.2-.3]

feet/pixel; 15. Dwell Time actual(sec): [2-5] sec; 16. IET actual(sec): [0-120] sec; 17.

PTR: Probability of Target Report (0-1); 18. PFTR: Probability of False Target Report (0-

1); 19. PT1: Prob of being a Target given report 1 (0-1); 20. PT2: Prob of being a Target

given report 2 (0-1)

21. Target Truth: [0=NonTarget, 1=Target],(only shows up on reports 1 and 2); 22.

p: the a priori density [.5-.05]; 23. Revisit Number: [1,2,3]; 24. Revisits Left: [3,2,1,0];

25. Operator Response: [1 = target, 0 = no target]; 26. Revisit Decision: [0 = no revisit,

>0 indicates desired revisit state]; 27. Revisit AA commanded(deg): [90] nominally; 28.

Revisit GSD commanded(ft): [.19] ft/pixel nominally; 29. Revisit Altitude Commanded

MSL(ft): [200] nominally; 30. Revisit AA actual: [90] deg nominal

31. Revisit GSD actual: [.19] nominal; 32. Revisit Dwell Time actual: [4.5] sec nom-

inal; 33. Revisit IET actual: [0-100] sec; 34. Commanded Dwell Time: [4.5] sec nominal;
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35. Commanded Speed: [29-60] fps, on revisit 29fps nominal; 36. Speed actual: [29-60]

fps, on revisit 29fps nominal
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EntryType Time_s Vehicle_ID VehicleHeading_degVehicleAltitudeMSL_ftPOI_ID POI_Latitude_degPOI_Longitude_degPOI_AltitudeMSL_ftPOI_Heading_deg

3 145.968 4.53E+08 0 0 10003 0 0 0 0

4 147.968 4.53E+08 0 0 10003 0 0 0 0

1 152.156 4.53E+08 156.887 405.747 10003 33.3091 44.3703 105.749 351.48

3 156.968 4.53E+08 0 0 18 0 0 0 0

4 158.968 4.53E+08 0 0 18 0 0 0 0

1 162.468 4.53E+08 187.025 363.771 18 33.3269 44.342 128.773 41.71

3 164.968 4.53E+08 0 0 10011 0 0 0 0

4 166.968 4.53E+08 0 0 10011 0 0 0 0

1 170.359 4.53E+08 23.1545 456.331 10011 33.3321 44.3818 141.334 222.35

3 178.968 4.53E+08 0 0 10009 0 0 0 0

4 180.968 4.53E+08 0 0 10009 0 0 0 0

1 186.531 4.53E+08 315.891 367.59 10009 33.278 44.3455 127.591 168.84

3 209.984 4.53E+08 0 0 10017 0 0 0 0

4 210.968 4.53E+08 0 0 10017 0 0 0 0

1 215.25 4.53E+08 205.259 401.31 10017 33.324 44.3436 131.313 32.17

3 223.968 4.53E+08 0 0 10003 0 0 0 0

4 225.968 4.53E+08 0 0 10003 0 0 0 0

3 229.968 4.53E+08 0 0 8 0 0 0 0

2 230.64 4.53E+08 351.52 330.748 10003 33.3091 44.3703 105.749 351.48

4 231.968 4.53E+08 0 0 8 0 0 0 0

1 235.875 4.53E+08 140.106 398.639 8 33.2772 44.3447 128.641 353.05

3 256.156 4.53E+08 0 0 10011 0 0 0 0

4 258.968 4.53E+08 0 0 10011 0 0 0 0

2 263.515 4.53E+08 222.207 366.335 10011 33.3321 44.3818 141.334 222.35

3 281.968 4.53E+08 0 0 10017 0 0 0 0

4 283.968 4.53E+08 0 0 10017 0 0 0 0

2 288.75 4.53E+08 32.0435 356.313 10017 33.324 44.3436 131.313 32.17

3 301.968 4.53E+08 0 0 8 0 0 0 0

4 303.968 4.53E+08 0 0 8 0 0 0 0

3 308.968 4.53E+08 0 0 5 0 0 0 0

2 310.734 4.53E+08 353.08 353.639 8 33.2772 44.3447 128.641 353.05

4 310.968 4.53E+08 0 0 5 0 0 0 0

1 316.687 4.53E+08 257.716 413.745 5 33.3079 44.3708 108.749 81.53

3 366.984 4.53E+08 0 0 10019 0 0 0 0

4 368.968 4.53E+08 0 0 10019 0 0 0 0

3 370.968 4.53E+08 0 0 10012 0 0 0 0

4 372.968 4.53E+08 0 0 10012 0 0 0 0

1 373.046 4.53E+08 129.171 371.333 10019 33.3218 44.3425 131.334 342.83

1 377.406 4.53E+08 73.2312 361.143 10012 33.329 44.3824 131.144 264.38

3 386.968 4.53E+08 0 0 5 0 0 0 0

4 388.968 4.53E+08 0 0 5 0 0 0 0

2 392.125 4.53E+08 81.4904 333.749 5 33.3079 44.3708 108.749 81.53

3 407.968 4.53E+08 0 0 10006 0 0 0 0

4 409.968 4.53E+08 0 0 10006 0 0 0 0

1 415.187 4.53E+08 349.322 426.15 10006 33.2746 44.3448 136.152 171.36

3 436.968 4.53E+08 0 0 14 0 0 0 0

Figure I.1: Output File, Row 1–46, Col 1–10
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4 438.968 4.53E+08 0 0 14 0 0 0 0

1 442.718 4.53E+08 317.144 386.848 14 33.327 44.3823 131.849 162.51

3 444.14 4.53E+08 0 0 20 0 0 0 0

4 445.984 4.53E+08 0 0 20 0 0 0 0

1 450.453 4.53E+08 135.724 430.202 20 33.3214 44.3394 135.204 351.39

3 487.984 4.53E+08 0 0 1 0 0 0 0

4 489.968 4.53E+08 0 0 1 0 0 0 0

3 490.968 4.53E+08 0 0 10006 0 0 0 0

3 491.968 4.53E+08 0 0 10013 0 0 0 0

4 492.968 4.53E+08 0 0 10006 0 0 0 0

4 493.968 4.53E+08 0 0 10013 0 0 0 0

1 494.546 4.53E+08 337.925 466.261 1 33.3057 44.3694 141.264 170.24

2 496.437 4.53E+08 171.397 361.151 10006 33.2746 44.3448 136.152 171.36

1 499.093 4.53E+08 100.042 371.354 10013 33.326 44.3808 129.109 315.5

3 521.968 4.53E+08 0 0 20 0 0 0 0

4 523.968 4.53E+08 0 0 20 0 0 0 0

2 529.203 4.53E+08 351.431 360.203 20 33.3214 44.3394 135.204 351.39

3 560.968 4.53E+08 0 0 10002 0 0 0 0

4 562.968 4.53E+08 0 0 10002 0 0 0 0

1 566.796 4.53E+08 299.322 422.312 10002 33.3044 44.3713 132.314 123.09

3 567.156 4.53E+08 0 0 10013 0 0 0 0

4 568.968 4.53E+08 0 0 10013 0 0 0 0

2 573.437 4.53E+08 315.641 346.59 10013 33.326 44.3808 129.109 315.5

3 597.984 4.53E+08 0 0 10016 0 0 0 0

4 599.968 4.53E+08 0 0 10016 0 0 0 0

3 602.968 4.53E+08 0 0 10 0 0 0 0

1 603.984 4.53E+08 34.6475 446.434 10016 33.3232 44.3469 131.434 221.74

4 604.968 4.53E+08 0 0 10 0 0 0 0

1 609.359 4.53E+08 283.519 451.619 10 33.2722 44.3475 131.621 139.25

3 633.968 4.53E+08 0 0 10002 0 0 0 0

4 635.968 4.53E+08 0 0 10002 0 0 0 0

2 640.593 4.53E+08 123.213 357.313 10002 33.3044 44.3713 132.314 123.09

3 667.968 4.53E+08 0 0 10016 0 0 0 0

4 669.984 4.53E+08 0 0 10016 0 0 0 0

2 674.343 4.53E+08 221.601 356.434 10016 33.3232 44.3469 131.434 221.74

3 677.968 4.53E+08 0 0 10 0 0 0 0

4 679.968 4.53E+08 0 0 10 0 0 0 0

3 681.062 4.53E+08 0 0 15 0 0 0 0

2 682.671 4.53E+08 139.372 356.62 10 33.2722 44.3475 131.621 139.25

4 683.015 4.53E+08 0 0 15 0 0 0 0

1 686.562 4.53E+08 238.971 401.588 15 33.3271 44.3868 121.591 87.26

3 722.968 4.53E+08 0 0 4 0 0 0 0

4 724.968 4.53E+08 0 0 4 0 0 0 0

1 730.046 4.53E+08 175.249 427.24 4 33.3051 44.3726 122.244 357.95

3 754.14 4.53E+08 0 0 15 0 0 0 0

4 755.968 4.53E+08 0 0 15 0 0 0 0

2 758.671 4.53E+08 87.2463 346.591 15 33.3271 44.3868 121.591 87.26

Figure I.2: Output File, Row 47–94, Col 1–10
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3 777.968 4.53E+08 0 0 7 0 0 0 0

4 779.968 4.53E+08 0 0 7 0 0 0 0

1 782.812 4.53E+08 257.064 425.84 7 33.277 44.3485 130.842 110.43

# out of %

First Looks

FA 2 10 20.00%

MD 2 10 20.00%

Revisits

FA 0 5 0.00%

MD 0 7 0.00%

Figure I.3: Output File, Row 95–97, Col 1–10
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VisitCommand_AspectAngle_degVisitCommand_GSD_ftVisitActual_AspectAngle_degVisitActual_GSD_ftVisitActual_Dwell_sVisitActual_InterEvent_sProbTargetReportProbFalseTargetReportProbTargetGivenReportProbTargetGivenReport2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

75.3095 0.252098 75.3292 0.25454 3.65066 145.968 0.862489 0.655953 0.714847 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

55.3494 0.19857 55.3261 0.19939 3.0656 11 0.895812 0.73745 0.123792 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

70.9313 0.263201 70.2983 0.267267 3.05876 8 0.763131 0.516376 0.612094 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

56.926 0.202125 57.0512 0.203632 4.37079 14 0.910493 0.838234 0.849135 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

83.191 0.22502 83.254 0.229086 2.68618 31.016 0.898878 0.772548 0.798059 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.9604 0.190905 4.55 13.984 0.945155 0.947053 0 0.978142

0 0 0 0 0 0 0 0 0 0

56.937 0.226276 56.901 0.229086 3.05488 6 0.848486 0.655353 0.187781 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.8569 0.190905 4.55001 26.188 0.975 0.9875 0 0.991941

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.8737 0.190906 4.55004 25.812 0.975 0.9875 0 0.996766

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.97 0.190905 4.55 20 0.960078 0.967276 0 0.009452

0 0 0 0 0 0 0 0 0 0

86.2384 0.257111 86.4953 0.258783 2.99722 7 0.819043 0.660734 0.707102 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

56.2037 0.202881 56.3406 0.203632 3.78771 58.016 0.920714 0.795287 0.818102 0

78.9296 0.194139 78.8512 0.195147 4.1543 3.984 0.903097 0.851003 0.858381 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.9608 0.190905 4.55 16 0.960078 0.967276 0 0.09061

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

87.9167 0.244731 87.962 0.246055 4.54358 21 0.872468 0.734156 0.766458 0

0 0 0 0 0 0 0 0 0 0

Figure I.4: Output File, Row 1–46, Col 11–20
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0 0 0 0 0 0 0 0 0 0

64.4931 0.212622 64.6568 0.216359 3.26243 29 0.89184 0.630003 0.146526 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

54.1945 0.246707 54.2644 0.250298 3.55309 7.172 0.80991 0.624208 0.23344 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

77.5906 0.272619 77.7141 0.275752 4.00569 43.844 0.822929 0.551774 0.242947 0

90 0.190905 89.9631 0.190905 4.55 2.984 0.930233 0.926829 0 0.976593

57.4534 0.200242 57.082 0.203632 2.41808 1 0.866379 0.697436 0.160784 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.9588 0.190905 4.55 30 0.975 0.9875 0 0.007651

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

86.097 0.245329 86.7982 0.246056 3.0135 39 0.847755 0.665929 0.717326 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.859 0.184526 4.39796 6.188 0.945155 0.947053 0 0.773758

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

83.0949 0.26679 81.4642 0.267269 2.67901 30.828 0.809391 0.493863 0.278476 0

0 0 0 0 0 0 0 0 0 0

54.2123 0.270589 54.2955 0.271509 4.058 4.984 0.732272 0.561123 0.323011 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.8768 0.190905 4.55 31 0.975 0.9875 0 0.994973

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.8604 0.190905 4.55001 34 0.975 0.9875 0 0.96785

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.8777 0.190905 4.55 10 0.945155 0.947053 0 0.026888

0 0 0 0 0 0 0 0 0 0

61.8261 0.236706 61.9841 0.237571 2.9215 3.094 0.773243 0.59528 0.275848 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

87.2767 0.256836 87.3643 0.258782 3.70163 41.906 0.867859 0.710192 0.156875 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90 0.190905 89.9864 0.190905 4.55 31.172 0.975 0.9875 0 0.009552

Figure I.5: Output File, Row 47–94, Col 11–20
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

56.8409 0.247232 55.3198 0.250298 2.59002 23.828 0.824641 0.489504 0.617645 0

Figure I.6: Output File, Row 95–97, Col 11–20
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bTarget APrioriTargetDensityRevisitNumberNumberRevisitsLeftOperatorResponseRevisitDecsionRevisitCommand_AspectAngle_degRevisitCommand_GSD_ftRevisitCommand_VehicleAltitudeMSL_ftIndex_AspectAngle

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 0 3 1 13 90 0.190905 330.749 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 0 3 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 0 3 1 13 90 0.190905 366.334 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 0 3 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 0 3 1 13 90 0.190905 356.313 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 1 2 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0.5 0 3 0 13 90 0.190905 353.641 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 1 2 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 1 2 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 1 2 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0.5 1 2 1 13 90 0.190905 333.749 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 1 2 1 0 0 0 0 1

1 0.5 1 2 1 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 2 1 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 1 2 1 13 90 0.190905 361.152 3

0 0 0 0 0 0 0 0 0 0

Figure I.7: Output File, Row 1–46, Col 21–30
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0 0 0 0 0 0 0 0 0 0

0 0.5 1 2 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 1 2 0 13 90 0.190905 360.204 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 2 1 0 0 0 0 0 2

1 0.5 2 1 1 0 0 0 0 3

1 0.5 1 2 0 13 90 0.190905 346.591 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 2 1 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 2 1 1 13 90 0.190905 357.313 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 2 1 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 2 1 0 13 90 0.190905 356.433 2

0 0 0 0 0 0 0 0 0 0

0 0.5 2 1 0 13 90 0.190905 356.621 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 3 0 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0.5 3 0 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 3 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0.5 2 1 0 13 90 0.190905 346.591 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 3 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 3 0 0 0 0 0 0 3

Figure I.8: Output File, Row 47–94, Col 21–30
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.5 3 0 1 0 0 0 0 1

Figure I.9: Output File, Row 95–97, Col 21–30
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Index_GSDIndex_DwellIndex_InterEventVisitCommand_Dwell_sVisitCommand_Speed_fpsVisitActualSpeed_fps

0 0 0 0 0 0

0 0 0 0 0 0

2 2 3 3.65066 48.6838 48.6838

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 3.0656 45.4137 45.4137

0 0 0 0 0 0

0 0 0 0 0 0

3 1 1 3.05876 61.0098 61.0098

0 0 0 0 0 0

0 0 0 0 0 0

0 3 1 4.37079 32.5301 32.5301

0 0 0 0 0 0

0 0 0 0 0 0

1 1 3 2.68618 59.5475 59.5475

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3 1 4.55 29.2958 29.2958

0 0 0 0 0 0

1 1 1 3.05488 52.3605 52.3605

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3 2 4.55 29.2958 29.2958

0 0 0 0 0 0

2 1 1 2.99722 60.286 60.286

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2 3 3.78771 37.5379 37.5379

0 2 0 4.1543 32.7993 32.7994

0 0 0 0 0 0

0 0 0 0 0 0

0 3 2 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

2 3 2 4.54358 37.8124 37.8124

0 0 0 0 0 0

Figure I.10: Output File, Row 1–46, Col 31–36
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0 0 0 0 0 0

1 1 3 3.26243 46.3056 46.3056

0 0 0 0 0 0

0 0 0 0 0 0

2 2 1 3.55309 49.187 49.187

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 2 3 4.00569 48.0664 48.0664

0 3 0 4.55 29.2958 29.2958

0 0 0 2.41808 58.7998 58.7998

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

2 1 3 3.0135 57.0114 57.0114

0 0 0 0 0 0

0 0 0 0 0 0

0 3 1 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 1 3 2.67899 69.6585 69.6585

0 0 0 0 0 0

3 2 0 4.058 46.7168 46.7168

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 4.55 29.2958 29.2958

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 3 1 4.55 29.2958 29.2958

0 0 0 0 0 0

2 1 0 2.9215 56.7789 56.7789

0 0 0 0 0 0

0 0 0 0 0 0

2 2 3 3.70163 48.8137 48.8137

0 0 0 0 0 0

0 0 0 0 0 0

0 3 3 4.55 29.2958 29.2958

Figure I.11: Output File, Row 47–94, Col 31–36
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0 0 0 0 0 0

0 0 0 0 0 0

2 0 2 2.59002 67.4766 67.4767

Figure I.12: Output File, Row 95–97, Col 31–36

166
Approved for public release; distribution unlimited.



Appendix J: Operator Debrief

Human Behavior Modeling & Stochastic Control Project

Outbrief Questions for S1

11 Oct 2013

Q: You have not been provided any feedback. Do you think this has hurt your performance

(or score)? (PC=75%, FA=38%, MD=12%)

A: Thinks that feedback would have caused more stress to perform better. Leans toward

having no feedback. Thought saw more Y than V at the more oblique aspect angles. Did

not consciously bias the results—did not lean toward FA or MD.

Q: Do you think you are doing better over time? (72% start to 75% end; mean PC=73.5%;

std 3.5%)

A: Thought performance was improving more than what it actually did. Later in the runs,

confidence scores went up.

Q: No criterion has been given to you—can you describe your decision criterion?

A: Said that if the aspect angle is straight on, then can render a decision in 1 sec. If can’t

tell, then will weight the T/NT decision with the number of targets seen over the last 4-5

objects. If there was a state that knew wouldn’t be able to see well (e.g. high altitude and

low angle) then spent less effort to identify those vehicles.

Q: After 130 runs, do you think you can predict what comes next? Do you recognize

individual scenarios? How many are there?

A: Knows there are 4 scenarios and can recognize them as such. However, cannot predict

if the next object is going to be a T or NT.

Q: What do you think the density is? How do you think this affects your criteria?

A: Was told at the beginning of the study that the density was 50%. Recognized sometimes

that the same area was being looked at again, but wasn’t aware that it was a second look.
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Stated that what was said on the 2nd look was not affected by what was said on the 1st

look—independent observations.

Q: Which conditions (or states) do you think are hardest for you and which are easiest?

A: Said the highest altitude and the most oblique angle is essentially a guess. Said Dwell

and IET variations are much less problematic.

Q: Do you think the erratic video has appreciably affected your score?

A: The video glitch would occasionally cause an object to be missed on multiple alerts.

Rarely would the glitch “help”.

Q: Have you noticed any situations where all 4 alerts are on?

A: There would be 4 alerts on about twice per session (5 runs). Of these, would generally

guess on 1 of the 4.

Q: How often do you see 3 alerts? 2 alerts? Degree of difficulty? Do you guess sometimes

with 3 alerts? Miss? (miss means did not have time to observe object and did not select

T/NT)

A: Said had a 3 alert event in every scenario. Did not “miss” any of the objects.

Q: If there were no more than 1 alert at a time, do you think this would appreciably improve

your score?

A: Said 1 at time probably would not be much better. Can easily handle 2 at time, even 3.

Q: Do you think the Y-V discrimination task is too contrived? (or trivial?)

A: Said, on average, the discrimination task is moderately difficult. At higher depression

angles the V looks like a Y.

Q: What would you change about the simulation or task to make it more “realistic”.

A: Have people and vehicles moving around.

Q: Are the sessions boring? Should they be shorter or longer? Fatigue? Stress? Eye strain?

(Note: we are trying to estimate distributions, which take a lot more data—use aero table

analogy.)
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A: Boring—yes. But doesn’t think zoned out, because each run and session are sufficiently

short.

Q: If you had 3 choices - (T, NT, [“Don’t Know” V “Can’t Tell” V “Guess” V “Not Sure”

V “Ambiguous” V “Equally Likely”]), how often do you think you would have picked the

3rd choice?

A: Felt that if had had a 3rd choice from the beginning, would have abused it (used it most

of the time). Now, thinks could use it judiciously.

Q: How do you interpret a 1–5 confidence ranking? If you had to map confidence ranking

into the 3rd choice button, which would you choose? (1 and 2)?

A: Would choose 1 and 2. Test Director and operator said felt there was a change in

the confidence levels on or about 4 Sep. (Note: This date seems to be correlated with the

change in the Operator Model.) Felt there were more 1+2 before this date than after. (Note:

This was checked and there did not seem to be a statistically significant difference.)

Q: Do you think the initial training you received was adequate? How would you change it?

A: Thought the training and duration (5 runs) was adequate. Would prefer to have seen a

V before the training.

Q: Suppose you knew up front that the “score” metric was PC. Do you think that would

change or bias the present results? What if you got continuous updates?

A: Felt that knowing about the PC metric probably would not have helped. Liked or

preferred not knowing about the score or incremental performance. Knowing would have

caused more second guessing.

(Explain how the SC works if the operator doesn’t already know.)

Q: As you now know, you were performing the classifier task—everything else was

automated. Would you have preferred more control over the task? The planner? More

explanation? Tactical Situation Display (TSD)? Do you think this would have improved
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the final results? (Estimator PC=93.5%)

A: Said would have decided to revisit on a confidence level of 1+2.

170
Approved for public release; distribution unlimited.



Appendix K: Alternative Revisit Strategy Based on Confidence Ratings

The Stochastic Controller (SC) attempts to improve overall performance by selecting

points of interest for revisit. It makes selections and attempts to do so in an optimal and

tractable way. In an attempt to compare the SC’s revisits strategy to an alternative revisit

strategy, we explored the human’s ability to select a revisit. Also, using the human to

select revisits has the advantage of being able to generalize to different targets more easily

than the stochastic controller and the human behavior model. Since the operator did not

report her desire to revisit during the experiment, we approximated that decision using the

confidence responses with the rationale that an operator would revisit when confidence is

low (e.g., she knew she made a guess).

The revisit performance data was approximated by selecting low confidence ratings

and replacing the initial visit score with the average score for revisits, 98.75%. To reiterate,

when a point of interest was revisited, the response from the initial visit score (and any

information contained within it) was lost. Low confidence ratings of 1 were prioritized

over confidence ratings of 2. The confidence rating of 1 was given on approximately 37%

of initial visits and the UAVs are able to revisit 60% points of interest in total, leaving

23% remaining for confidence ratings of 2. Since there were more confidence ratings

of 2 than could be revisited, the remaining budget was spent on a random selection of

confidence ratings of 2. The confidence-based revisit strategy resulted in an overall system

performance of 92.86%. This score differs slightly from the overall system performance of

93.5% when the SC was used.

One should note that a rigorous approach to using the operator’s confidence rating

requires the expansion of the confusion matrix. Experimentally obtaining such an

augmented confusion matrix would be expensive, particularly at low target density.
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Appendix L: Simulation Setup Procedure

1. Power on VSCS Computer and log on

(a) User: usaf

(b) Pwd: xxxxx

2. Power on all MetaVR computers

(a) User: vssensor

(b) Pwd: xxxxxxxx

3. Open TrueCrypt and Mount D drive

(a) Select encryption file location: C:\D\encypted.tc

(b) Mount with pwd: xxxxxxxx

4. Move the scenario appropriate terrain file into each of the 4 networked UAV drives

(a) Ensure that it is named ”Baghdad-Demo Terrain.clt”

5. Launch MetaVR on each sensor computer

(a) Double click VSSensor icon on desktop

(b) Ensure pointer is set to correct network configuration

(c) Hit green arrow

(d) Once loading is done, open MetaVR console (press exit key on keyboard) and

then hit record (ensure video is set to 640x480 @ 8 bits/sec)

6. Move the correct scenario mission file into the mission folder

(a) PointSearchTasks.vsxml
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7. Move the correct operator model into the model folder

(a) operatorModel.xml

8. Start the Control station and simulator

(a) Double click on the launcher

(b) Ensure version is correct

(c) Select both GCS and Sim and launch

(d) Ensure mission and network configuration pointers are correct

(e) Check ”Use Video Takers” on the simulation panel

(f) Launch both GCS and Sim

9. Start the simulation (ensure that MetaVR sims are all running before doing this)

10. In the assets tab of the bottom pane, select ”Full control” on each of the UAVs

11. Configure TSD

(a) Map-> CB 10m

(b) Center on -> Hawk A, Center on-> none

(c) General Declutter -> uncheck UAV video/info and anything else

12. Configure video feeds

(a) Starting from top left = Hawk A, top right = Hawk B, bottom left = Hawk C,

bottom right = Hawk D

(b) Deselect HUD on all UAVs

13. Start CCA

(a) Click on CCA Tab
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(b) Start planning

(c) Next

(d) Select all UAVs

(e) Next

(f) Submit plan request

(g) Check auto upload plans

(h) Once plans flash green click ”All on”. Will ask if you are sure. Click ”yes” to

begin.

14. To start a new scenario, close VSCS , Simulation, and each of the MetaVR sensors.

Wait for GCS to fully close and ensure any extra command windows are closed. Start

over from step 4.
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